

## **Coal Power's Trilemma**

### Variable Cost, Efficiency and Financial Solvency

Karthik Ganesan and Danwant Narayanaswamy

Report | July 2021



Around 65% of the total coal power generation capacity as of March 2020 was installed in the previous ten-year period.



## **Coal Power's Trilemma**

### Variable Cost, Efficiency, and Financial Solvency

Karthik Ganesan and Danwant Narayanaswamy

Report July 2021 ceew.in Copyright © 2021 Council on Energy, Environment and Water (CEEW).

| BY NC SA            | Open access. Some rights reserved. This work is licensed under the Creative Commons<br>Attribution-Noncommercial 4.0. International (CC BY-NC 4.0) license. To view the full license,<br>visit: www.creativecommons.org/licenses/ by-nc/4.0/legalcode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Disclaimer:         | The views expressed in this study are those of the authors and do not necessarily reflect the views and policies of the Council on Energy, Environment and Water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Suggested citation: | Ganesan, Karthik, and Danwant Narayanaswamy. 2021. Coal Power's Trilemma: Variable Cost,<br>Efficiency, and Financial Solvency. New Delhi: Council on Energy, Environment and Water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Cover image:        | iStock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Peer reviewers:     | S. R. Narasimhan, Director – System Operations, POSOCO; Dr Johannes Urpelainen, Founding<br>Director, Initiative for Sustainable Energy Policy; Dr Kaveri lychettira, Assistant Professor,<br>Indian Institute of Technology, Delhi; Dr Rahul Tongia, Senior Fellow, Centre for Social and<br>Economic Progress; Ashok Sreenivas, Senior Fellow, Prayas (Energy Group); Maria Chirayil,<br>Research Associate, Prayas (Energy Group); and Shalu Agrawal, Senior Programme Lead,<br>CEEW.                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Publication team:   | Alina Sen (CEEW), Venkatesh Krishnamoorthy, Aspire Design, and Friends Digital.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Organisation:       | The <b>Council on Energy, Environment and Water (CEEW)</b> is one of Asia's leading not-for-<br>profit policy research institutions. The Council uses data, integrated analysis, and strategic<br>outreach to explain – and change – the use, reuse, and misuse of resources. It prides itself on<br>the independence of its high-quality research, develops partnerships with public and private<br>institutions, and engages with wider public. In 2021, CEEW once again featured extensively<br>across ten categories in the 2020 <i>Global Go To Think Tank Index Report</i> . The Council has also<br>been consistently ranked among the world's top climate change think tanks. CEEW is certified<br>as a Great Place To Work <sup>®</sup> . Follow us on Twitter @CEEWIndia for the latest updates. |  |  |  |
|                     | Council on Energy, Environment and Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

Sanskrit Bhawan A-10, Qutab Institutional Area, Aruna Asaf Ali Marg New Delhi – 110067, India

## About CEEW

About CEEW The Council on Energy, Environment and Water (CEEW) is one of Asia's leading not-for-profit policy research institutions. **The Council uses data, integrated analysis, and strategic outreach to explain** — **and change** — **the use, reuse, and misuse of resources.** The Council addresses pressing global challenges through an integrated and internationally focused approach. It prides itself on the independence of its high-quality research, develops partnerships with public and private institutions, and engages with the wider public.

The Council's illustrious Board comprises Mr Jamshyd Godrej (Chairperson), Mr Tarun Das, Dr Anil Kakodkar, Mr S. Ramadorai, Mr Montek Singh Ahluwalia, Dr Naushad Forbes, Ambassador Nengcha Lhouvum Mukhopadhaya, and Dr Janmejaya Sinha. The 120-plus executive team is led by Dr Arunabha Ghosh. CEEW is certified as a **Great Place To Work**<sup>®</sup>.

In 2021, CEEW once again featured extensively across ten categories in the 2020 Global Go To Think Tank Index Report, including being ranked as **South Asia's top think tank (15th globally) in our category for the eighth year in a row**. CEEW has also been ranked as South Asia's top energy and resource policy think tank for the third year running. It has consistently featured among the world's best managed and independent think tanks, and twice among the world's 20 best climate think tanks.

In ten years of operations, The Council has engaged in 278 research projects, published 212 peer-reviewed books, policy reports and papers, created 100+ new databases or improved access to data, advised governments around the world nearly 700 times, promoted bilateral and multilateral initiatives on 80+ occasions, and organised 350+ seminars and conferences. In July 2019, Minister Dharmendra Pradhan and Dr Fatih Birol (IEA) launched the CEEW Centre for Energy Finance. In August 2020, Powering Livelihoods — a CEEW and Villgro initiative for rural start-ups — was launched by Minister Mr Piyush Goyal, Dr Rajiv Kumar (NITI Aayog), and H. E. Ms Damilola Ogunbiyi (SEforAll).

**The Council's major contributions include:** The 584-page *National Water Resources Framework Study* for India's 12th Five Year Plan; the first independent evaluation of the National Solar Mission; India's first report on global governance, submitted to the National Security Adviser; irrigation reform for Bihar; the birth of the Clean Energy Access Network; work for the PMO on accelerated targets for renewables, power sector reforms, environmental clearances, Swachh Bharat; pathbreaking work for the Paris Agreement, the HFC deal, the aviation emissions agreement, and international climate technology cooperation; the concept and strategy for the International Solar Alliance (ISA); the Common Risk Mitigation Mechanism (CRMM); critical minerals for Make in India; modelling uncertainties across 200+ scenarios for India's low-carbon pathways; India's largest multidimensional energy access survey (ACCESS); climate geoengineering governance; circular economy of water and waste; and the flagship event, Energy Horizons. It recently published Jobs, Growth and Sustainability: A New Social Contract for India's Recovery.

The Council's current initiatives include: A go-to-market programme for decentralised renewable energypowered livelihood appliances; examining country-wide residential energy consumption patterns; raising consumer engagement on power issues; piloting business models for solar rooftop adoption; developing a renewable energy project performance dashboard; green hydrogen for industry decarbonisation; state-level modelling for energy and climate policy; reallocating water for faster economic growth; creating a democratic demand for clean air; raising consumer awareness on sustainable cooling; and supporting India's electric vehicle and battery ambitions. It also analyses the energy transition in emerging economies, including Indonesia, South Africa, Sri Lanka and Vietnam.

**The Council has a footprint in 22 Indian states**, working extensively with state governments and grassroots NGOs. It is supporting power sector reforms in Uttar Pradesh and Tamil Nadu, scaling up solar-powered irrigation in Chhattisgarh, supporting climate action plans in Gujarat and Madhya Pradesh, evaluating community-based natural farming in Andhra Pradesh, examining crop residue burning in Punjab, promoting and deploying solar rooftops in Delhi, Bihar and Meghalaya.

## Acknowledgments

We are grateful to our reviewers who provided critical comments: Mr S. R. Narasimhan, Director—System Operations, POSOCO; Dr Johannes Urpelainen, Founding Director, Initiative for Sustainable Energy Policy; Dr Kaveri Iychettira, Assistant Professor, Indian Institute of Technology, Delhi; Dr Rahul Tongia, Senior Fellow, Centre for Social and Economic Progress; Ashok Sreenivas, Senior Fellow, Prayas (Energy Group); and Maria Chirayil, Research Associate, Prayas (Energy Group); Shalu Agrawal, Senior Programme Lead, CEEW. Their inputs went a long way in refining the analysis and communicating the main findings of the study.

We also thank our colleagues at CEEW—Kurinji Selvaraj, Programme Associate, for helping in spatial analysis, Dhruv Warrior, Research Analyst, and Sangeeth Raja, former intern at CEEW, for helping us in the data collection process. We would like to express a special thank you to Gautam Pradhan from Earthmetry Decision Systems LLP for providing on-demand data support throughout the study. Finally, we thank the Outreach team at CEEW for quality control and for the publishing and outreach of this report.

### The authors



Karthik Ganesan karthik.ganesan@ceew.in

Karthik is a Fellow at The Council. He has been analysing energy and linkages to the economy for the past seven years and his current work is focused on cost-effective power generation options for discoms, understanding the environmental impact of power generation, and the role of energy efficiency in industrial production. He has a BTech and an MTech in Civil Engineering from IIT Madras and a Master's in Public Policy from the National University of Singapore.



Danwant Narayanaswamy danwant.narayanaswamy@ceew.in

Danwant is a Research Analyst at The Council. He is currently working on devising shortterm policies on thermal power generation. Prior to the current role, Danwant worked on estimating the cost of meeting air pollution standards in the coal-fired electricity sector in association with the International Institute for Sustainable Development. He is an Energy and Environmental Engineering graduate from Tamil Nadu Agricultural University, Coimbatore.

"The first step to India's energy transition in the power sector must be to improve the efficiency of generation in the thermal fleet. The current focus on lowering variable costs, with all the distortions that currently exist, needs to be reviewed and stress should be laid on minimising environmental fallouts." "Enhancing the efficiency of the Indian coal fleet by optimising the resource utilisation will help the power sector in achieving the triple bottom line—by avoiding pollution-related morbidity and mortality (people), reduced emissions (planet), and improved discom finances (profit)."



There is a need to improve data transparency, as we assess the performance of our thermal fleet and prioritise action to decarbonise electricity generation.

## Contents

| Exe  | ecutive summary                                                                    | xiii |  |  |  |  |
|------|------------------------------------------------------------------------------------|------|--|--|--|--|
| 1.   | Introduction                                                                       |      |  |  |  |  |
| 2.   | Methodology and data                                                               | 5    |  |  |  |  |
| 3.   | Descriptive results and corollaries                                                | 9    |  |  |  |  |
|      | 3.1 How are thermal power plants utilised?                                         | 9    |  |  |  |  |
|      | 3.2 How efficient is the generating fleet of thermal power plants?                 | 11   |  |  |  |  |
|      | 3.3 Categorisation of the variable cost of coal plants                             | 12   |  |  |  |  |
|      | 3.4 How does auxiliary consumption vary with vintage?                              | 14   |  |  |  |  |
| 4.   | Results of generation reassignment and impacts                                     | 17   |  |  |  |  |
|      | 4.1 Implications for efficiency, coal consumption, and variable cost of generation | 18   |  |  |  |  |
|      | 4.2 Implications for investment in pollution retrofits                             | 19   |  |  |  |  |
|      | 4.3 Overall implications of reassigning the generation mix                         | 20   |  |  |  |  |
|      | 4.4 Implications for technical operations of the grid                              | 21   |  |  |  |  |
|      | 4.5 Implications for supply and adequacy in future years (2020–2030)               | 22   |  |  |  |  |
| 5.   | Conclusions and recommendations                                                    | 25   |  |  |  |  |
| Refe | ferences                                                                           | 28   |  |  |  |  |
| Ann  | nexure                                                                             | 31   |  |  |  |  |



### Figures

| Figure ES1 | Younger plants use lesser thermal energy to generate electricity                      | xiv |
|------------|---------------------------------------------------------------------------------------|-----|
| Figure ES2 | Most of the savings in the reassigned scenario is attributable to improved efficiency | XV  |
| Figure 1   | More than 125 GW of coal-based generation has been commissioned in the last ten years | 9   |
| Figure 2   | Generation share of young plants are lesser than their respective capacity shares     | 10  |
| Figure 3   | State-owned plants show consistent under-utilisation across age groups                | 11  |
| Figure 4   | Age, unit capacity, and PLF are key determinants of SHR                               | 12  |
| Figure 5   | Despite having low variable cost, the PLF of 5- to 10-year group is low               | 12  |
| Figure 6   | Variable cost of generation is driven to a large extent by delivered cost of coal     | 13  |
| Figure 7   | Other than coal price, age, unit size, SHR and auxiliary consumption were significant |     |
|            | determinants of tariff                                                                | 14  |
| Figure 8   | Plants between 30 and 40 years of age access the cheapest coal                        | 14  |
| Figure 9   | Older plants consume a high percentage of power produced for its own operation        | 15  |
| Figure 10  | In the base case, 15 per cent of total annual coal requirement comes from plants over |     |
|            | 30 years of age                                                                       | 19  |
| Figure A1  | Older plants are likely to spend more energy per unit operation                       | 42  |
| Figure A2  | There is a significant distribution in coal quality, though the median is consistent  |     |
|            | across vintages                                                                       | 42  |

### Tables

| Table 1   | Private sector investments have been the major driver of capacity addition in the last decade                      |    |  |
|-----------|--------------------------------------------------------------------------------------------------------------------|----|--|
| Table 2   | Much of the older capacity is deemed surplus to the needs of the system in the analysis period                     | 18 |  |
| Table A1  | Target PLFs assigned to the units in the reassigned scenario                                                       | 31 |  |
| Table A2  | The system becomes less flexible in the reallocated scenario losing out on 26 per cent of the ramping capabilities | 31 |  |
| Table A3  | Southern region generates 11 per cent more in the reallocated scenario                                             | 32 |  |
| Table A4  | Daily average generation by states in the actual and reallocated scenario                                          | 32 |  |
| Table A5  | Private plants' share increase in the reassigned generation mix                                                    | 32 |  |
| Table A6  | Share of future demand met by retained assets in comparison to all demand from                                     |    |  |
|           | coal-based generation                                                                                              | 33 |  |
| Table A7  | Plants deemed as surplus in the reallocation scenario                                                              | 33 |  |
| Table A8  | Coal plants have contributed to much larger share at a regional level in the                                       |    |  |
|           | 30-month period than the estimated generation in reassigned scenario                                               | 40 |  |
| Table A9  | Majority of the capacity deemed surplus are at the early stage of FGD installation                                 | 41 |  |
| Table A10 | Around 3.5 GW ISGS capacity providing flexibility during peak demand hours are                                     |    |  |
|           | deemed surplus in the reassigned scenario                                                                          | 41 |  |

## Acronyms

| APTEL           | Appellate Tribunal for Electricity                                              |
|-----------------|---------------------------------------------------------------------------------|
| AT&C            | aggregate technical and commercial                                              |
| CEA             | Central Electricity Authority                                                   |
| CERC            | Central Electricity Regulatory Commission                                       |
| CO.             | carbon dioxide                                                                  |
| CPCB            | Central Pollution Control Board                                                 |
| ER              | eastern region                                                                  |
| FGD             | flue gas desulphuriser                                                          |
| FY              | financial year                                                                  |
| GDP             | gross domestic product                                                          |
| GHG             | greenhouse gas                                                                  |
| GW              | giga watt                                                                       |
| INR             | Indian rupee                                                                    |
| ISGS            | Inter-state generating stations                                                 |
| kcal            | kilo calorie                                                                    |
| KPI             | key performance indicators                                                      |
| kWh             | kilo-watt hour                                                                  |
| Mcal            | mega calorie                                                                    |
| MERIT           | Merit Order Despatch of Electricity for Rejuvenation of Income and Transparency |
| MoD             | merit order dispatch                                                            |
| MoEFCC          | Ministry of Environment, Forest, and Climate Change                             |
| MoP             | Ministry of Power                                                               |
| MT              | million tonnes                                                                  |
| MU              | million units                                                                   |
| MW              | mega watt                                                                       |
| NEP             | National Electricity Plan                                                       |
| NER             | north-eastern region                                                            |
| NIT             | notice inviting tender                                                          |
| NO <sub>x</sub> | nitrogen oxides                                                                 |
| NPA             | non-performing asset                                                            |
| NR              | northern region                                                                 |
| PFC             | Power Finance Corporation                                                       |
| PLF             | plant load factor                                                               |
| PM2.5           | particulate matter                                                              |
| POSOCO          | Power System Operation Corporation                                              |
| PPA             | power purchase agreement                                                        |
| PRAAPTI         | Payment Ratification And Analysis in Power procurement for bringing             |
|                 | Transparency In Invoicing of generators                                         |
| PTI             | Press Trust of India                                                            |
| RE              | renewable energy                                                                |
| SERC            | State Electricity Regulatory Commission                                         |
| SEVA            | Coal India Limited Koyla Grahak Seva                                            |
| SHR             | station heat rate                                                               |
| SO <sub>x</sub> | sulphur oxides                                                                  |
| SR              | southern region                                                                 |
| USD             | US Dollar                                                                       |
| WR              | western region                                                                  |



Variable costs of electricity generation from coal-based plants are distorted by fuel costs, fuel supply contracts and lop-sided fuel availability.

### **Executive summary**

I twas a 'lost-decade' (2010–2020) for coal-based power generation in India. There was much promise at the beginning of the decade and generation capacity was added at a breakneck pace. Eventually, low economic growth and poor growth in power demand ended up bankrupting the sector that was already teetering on the brink. Today, non-performing assets (NPAs) abound in the sector and recovery of dues is a challenge throughout the value chain. We are at crossroad, where at the global stage, India is contemplating its net-zero emissions timelines, while the only strategy presented thus far has been increasing the installed capacity base of renewable energy (RE).

What about our thermal fleet then? The timelines for compliance with pollution norms have been repeatedly stretched, with plants now being asked to present affidavits of retirement deadlines, if they have any, and benefit from a more lenient treatment. While air pollution legislation has been given prominence, soil and water pollution emanating from millions of tons of ash pile up still goes unnoticed. The COVID-19 pandemic has also dented demand growth and many assets, which are in advanced stages on construction, are in a grip of uncertainty. Alongside, a new market-based economic dispatch (MBED) mechanism for procuring bulk power has been proposed to begin in April 2022. By dispatching power through a central clearing mechanism, MBED aims to reduce power procurement costs by INR 12,000 crore (MoP, 2021). All these developments point to an undercurrent of a storm brewing in the sector, and it is at this moment we ask the question—Can India rethink how it manages its coal-based power generation fleet from here on?

#### **Reviewing the thermal setup**

We began this study with an examination of the performance—thermal, financial, and operational—of nearly 194 GW of coal-based generation capacity over the course of 30 months leading up to the start of the COVID-19 pandemic in India. We explored how assets are being utilised and segment them by vintage and ownership. We observed that older plants are generating a disproportionate share of electricity and, unsurprisingly, private sector plants bear the brunt of under-utilisation challenge the sector is facing. When exploring the cost distribution of plants, we find that not only do older plants have low fixed costs but they also have low variable costs and outcompete younger plants in the merit order stack. Even in cases where plants incurring low variable costs are available, plants with higher variable costs are dispatched as they are contracted and preferred by utilities, given their lock-in clause in the contracts. The net impact of the current strategy of utilisation of assets is that the thermal efficiency of the generation fleet in India is an abysmal 29.7 per cent, which in turn points to regulators being lax about such poor technical performance.



Older plants outcompete younger ones in fixed and variable costs Given the inefficient operations of the thermal fleet, we wanted to assess what exactly determines power plant efficiency and the variable costs of generation. Towards this end, we carried out a parametric regression assessment of these two metrics. We find that age, plant load factor (PLF), and the average size of units in a plant play an important role in determining how efficient a plant is. In the case of variable costs, we find that it is largely driven by the cost of delivered coal and to a lesser extent by operational characteristics of a plant such as station heat rate (SHR) and auxiliary consumption. These reinforce the theory that newer vintage plants, if operated more consistently, would yield better outcomes to achieve system efficiency and possibly also lower variable costs. This in turn implies better environmental outcomes—lower greenhouse gas (GHG) emissions, reduced output of criteria pollutants, or lesser quantity of ash generated. But the financial implications of this proposition remain to be seen.



#### Figure ES1

Younger plants use lesser thermal energy to generate electricity

Source: Authors' analysis based on CEA monthly coal statements, monthly generation reports and coal grades data from SEVA

#### Our approach to determining the criteria for dispatch

In a bid to conceive of a system where efficiency is rewarded, we demonstrate an approach to dispatch power, based on an efficiency merit order and not the one based on stated variable costs. We chose efficiency as the criterion for dispatch because variable costs are distorted by fuel costs and fuel supply contracts, among others. The order based on variable costs does not mirror efficiency, as evident in our descriptive assessment of the system. As a first step in our approach, we assign higher PLFs to newer vintages, which is inherently a logical step—from operational and financial standpoints of the system. We order plants in an increasing order of estimated SHR, based on the parametric function we established in the first step. Generation schedules are assigned to plants at a daily resolution level, without factoring in spatial and temporal constraints in the movement of power but only providing for the energy demanded in a day. This is a significant limitation, but it is important to understand the nature of unconstrained opportunities existing in the Indian thermal fleet. If the proposed efficiency-based dispatch is employed, the Indian coal fleet would be able to cater to the average energy demanded from it (over the assessment period) at an improved thermal efficiency of 6 per cent over the baseline (the current scenario in action). This implies that the generation efficiency goes up to 31.6 per cent. As a corollary, we find that the reassignment results in an annual saving of nearly 42 MT of coal and a concomitant reduction in GHG and criteria pollutant emissions. The overall fleet also operates at a higher overall PLF of 78 per cent, with significant room for providing more generation should the system require it.

## Outcome of our assessment: a more efficient and lower cost generation mix

We have structured an efficient generation mix, but does it financially make sense? The drivers of overall variable costs are delivered cost of coal, SHR, auxiliary consumption, unit size and age. In our assessment, we find that the delivered cost of coal in the reassigned scenario increases the overall cost of generation, as 20 per cent of the pit-head plants do not generate in the reassigned scenario. However, plants consume less energy, operate at a higher load factor, and as a result there are significant savings on variable costs of generation. The total savings on variable costs in this reassigned scenario amounts to INR 8,944 crore. Against the overall cost of power procurement by discoms, this is a small fraction, though significant enough to give much needed breathing room for their finances.



As a key outcome, we find that nearly 50 GW of capacity could be deemed as surplus to the requirements of the system, for the energy demand it caters to. Even when considering power delivered, the retained generation capacity could provide for the quantum of peak power required (143 GW in the analysis period) from the thermal fleet. We propose that 30 GW of the surplus capacity, which represents the older and some of the least efficient assets, be taken up for accelerated decommissioning as these have been identified in the National *Electricity Plan* (2018) for decommissioning during the course of this decade (2021-2030). Each passing year of delay increases the burden on us with a higher electricity bill and more air, water, and soil pollution to manage. It also results in a one-time saving of INR 10,200 crore in avoided pollution-control retrofits, which would otherwise be needed should some of these plants continue to operate. Nearly 20 GW of capacity can be considered for mothballing and based on a more rigorous assessment, it can be decided where they would be called upon to generate if contingencies are likely to arise. We also observe that the system has significant slack, outside of this assessed stock of plants, to manage contingencies and demand growth over the course of this decade. With nearly 36 GW of thermal power in various stages of construction, we find that meeting the electricity and power demand in later years of this decade should not be a matter for concern. Given some key limitations in terms of the spatial and temporal resolution in our study, there is a need to carry out a more rigorous assessment of the opportunities identified in this study. Equally, there is a need to assess electricity demand over the course of this decade and the prospects of RE materialising to the extent that it is currently anticipated in existing studies, in order to conclusively decide on decommissioning and its benefits.

#### Figure ES2

Most of the savings in the reassigned scenario is attributable to improved efficiency

Source: Authors' analysis

## Giving life to an illusion: how do we realise this opportunity?

The key contribution of our assessment has been clearly defining the performance metrics of the current thermal fleet in India in terms of both technical and financial aspects. As the data was hitherto not available easily in the public domain, it was compiled patiently and put together diligently for the purposes of the analysis. With data at our disposal, we propose a simple yet powerful way of viewing an alternative dispatch system. Some may consider the assessment incomplete as a result of the limitations stated earlier. However, in the planning horizon, the right set of policies and incentives can very much bring the outcomes envisaged in this study to life.

Despite the simplicity of our conclusions, the proposed reassignment of generation in favour of more efficient plants is far less likely to be operationalised. The Indian power system is mired in a rigid set of bilateral contracts for supply and taking away one to replace with another cannot be easily done. Our approach would leave the states with far lesser control on their sources of power, as many state-owned power generation stations are candidates for decommissioning. Given the challenges of payments for power procured and the broader political economy wielding 'power' over 'owned' generation assets, such a proposition is anathema to most actors. However, the future of the power system even as envisaged in recent white papers from the central regulator is moving towards a market-based system and does not bet on a bilateral scheduling between generators and discoms. Our proposed approach results in cost savings when viewed as a whole, but individual states are likely to see it only in terms of more costs and less flexibility for their operations.

We have two main recommendations for the Ministry of Power (MoP) and relevant actors as they look to establish the framework for MBED. First, we urge them to establish a set of key performance indicators (KPIs) for the thermal generation fleet, among which environmental footprint associated (as represented by thermal efficiency) with thermal power generation should be accorded priority. Individual legislations on water and criteria pollutants continue to languish, but bringing thermal efficiency to the centre of the debate could lower the costs. And second, we reiterate the need for consensusbuilding among states, in dialogue with central actors, to embrace the notion of a unified market. That the proposed MBED (starting in April 2022) is being carried out in two phases (MoP, 2021) is an indicator of uncertainty in the process. Beyond the implementation framework, we propose that an entity such a National Electricity Council be set up to oversee the concerns of states and central entities and allow for a seamless transition to the concept of 'one nation, one market'. The challenges of this transition go well beyond the technical domain and must address the needs of state electricity utilities and key entities like Coal India Limited and Indian Railways, and what the future holds for them.

As stated earlier, despite the financial savings being relatively small, our proposed approach to prioritise efficiency opens up a window of opportunity to de-stress generation assets in the sector. By clearing out the stock of inefficient assets, we create fresh breathing room and make a case for more investment in the sector—in RE, energy storage, system upgrades, among others. With the sword of surplus not hanging over the sector anymore, cash flows for stressed assets could improve and, as a result, financial institutions saddled with NPAs could be relieved of their burden. Having gone past this preliminary hurdle, the power sector needs to address some critical issues before it, as it prepares for the larger energy transition.



Retiring inefficient assets will create headroom for new investment focusing on the long-term

## 1. Introduction



country's economic development is synonymous with its growth in power demand. The  ${f A}$ projection of a USD 5 trillion gross domestic product (GDP) by 2024 (PTI, 2019a) has also set the expectation that India's power demand is set to escalate multifold in the next decade. The last decade (2010–2020) generated much hype but did not live up to that promise. Electricity consumption across the economy increased by a mere 55 per cent between FY 2010 and FY 2020 (MoP, 2020). The Central Electricity Authority (CEA), starting with the 13th Electric Power Survey, has consistently overestimated the peak power demand and overall electricity demand in the economy (Josey, Mandal, & Dixit, 2017). The supposedly prudent and shrewd private sector in India did itself no favours by buying into that narrative, without any checks of its own. The surplus generation capacity that the power sector achieved has been well documented (Josey, Mandal, & Dixit, 2017; Parray & Tongia, 2019; Josey, Dixit, Chitnis, & Gambhir, 2018; IEA, 2020). This resulted in the creation of a large number of generation assets, largely coal-based and more efficient, in many cases being available on call, but not being requisitioned. Equally, the supply of coal to some of the newly built plants was also in doubt, because development of new coal mining areas did not keep pace with the increased demand.

Many of the new assets were created primarily because power distribution companies (public and private discoms) indiscriminately signed power purchase agreements (PPA) based on a projected power demand that was not assessed well (Josey, Mandal, & Dixit, 2017). Signing PPAs implies that discoms are saddled with contracts that require them to honour the fixed cost payments due to the plants, irrespective of them supplying power, as dictated by the two-part tariff regime, which has been practiced in India since the 1980s. The indiscriminate signing of PPAs thus pushed up the overall cost of power purchase for discoms in recent years. In FY19, the total value of power sold to discoms was to the tune of INR 5,62,000 crore (USD 76.54 billion). In the same year, the total revenues that discoms managed to recover from their consumers was INR 4,87,000 crore (USD 66.33 billion) (PFC, 2020). The biggest challenge for the power sector is its revenues not covering even the cost of electricity procured. If the operating expenses of discoms (salaries, pensions, maintaining



Continuous overestimation of power demand in the past has led to surplus coal generation capacity distribution assets, financing costs, and so forth) of INR 1,60,000 crore (USD 21.79 billion) are considered, we see the wide gap between revenues from the sale of electricity and the costs of providing electricity (PFC, 2020).

Only a financially solvent utility would be able to address the energy needs of the poor and the aspiring class with rising incomes, as well as competitively supply electricity to Indian industry. Despite generous public support—through grants and interest rate subventions—discoms were staring at annual losses to the tune of INR 27,000 crore in FY 2019 (PTI, 2019b), depriving them of their ability to cater to any of these segments effectively. As a result of their poor financial health, discoms remain as debtors to generation companies. The total dues owed by discoms to power producers stands at INR 90,026 crore at the end of February 2021 (PRAAPTI, n.d.) and, by some accounts, this figure could be even higher (Rajasekhar & Tongia, 2020).

In literature documenting the policy failures leading to the financial woes of discoms, the most frequently discussed issues pertain to the cross-subsidized tariff structure for domestic and agriculture consumers, poor metering, billing and collection inefficiencies, and high aggregate technical and commercial (AT&C) losses in the operations of utilities (Dubash & Rajan, 2001; Tongia, 2003; Das et al. 2019; Aggarwal et al. 2020; Rajasekhar & Tongia, 2020). However, there is one other factor that often flies under the radar, that is, power purchase cost. Studies acknowledge that power purchase costs account for about 75-80 per cent of total cost of power supply incurred by a discom (Bharadwaj, Ganesan, & Kuldeep, 2017; Josey et al. 2018; Aggarwal et al. 2020). However, power purchase cost is often treated as a rigid variable in the assessment of discom operations, because oftentimes discoms purchase power through long-term contracts that have to be honoured. An important option for discoms to reduce their power purchase cost is in the margin-through better management of variable costs. This, in turn, depends on how well the merit order dispatch (MoD) principles are followed. Discoms failing to rigorously follow MoD principles is the primary reason for them incurring a high-power purchasing cost. An assessment in the case of Uttar Pradesh finds that that low-cost generation stations are not utilised to their fullest potential. The reasons cited for this range from transmission constraints to coal availability, to plant availability, and even system requirements such as maintaining voltage in the subtransmission system (Aggarwal et al. 2020).

While coal-based technologies for power plants have evolved with time, the adoption of efficient technologies in the Indian power system has certainly been lagging. The importance of efficiency in driving down costs has been completely ignored in the operation of coal-based power systems in India. The sub-critical pulverised coal technology has been the workhorse of the power system with significant domestic supply capability (Chikkatur & Sagar, 2007). The first super-critical plant in India was commissioned only in 2012 and the first (and possibly the only) ultrasuper critical power plant was commissioned in 2019 (ETEnergyWorld, 2019). Out of 205 GW capacity of coal/lignite plants in India, 93 GW has been added since April 2012 (CEA, 2020a; CEA, 2015). A bulk of this capacity uses sub-critical technology (CEA, 2018). Furthermore, there have been only a few critical assessments of the efficiency of coal-based generation assets in the Indian system (Chitnis, et al., 2018) and their effectiveness has been limited, as evident from the current state of the system. Barring the documentation of thermal performance, which has also been sporadic and which presents aggregated views on thermal efficiency of stations, a transparent depiction of factors driving the efficiency is not available.

As the debate around net-zero emissions and India's commitment to reducing overall greenhouse gas (GHG) emissions from energy use intensifies, the development of power sector in the next two decades would play a critical role in determining the pace of the country's progress. Coal used in the power sector contributes nearly 40 per cent of the GHG emissions arising from the use of fossil fuels in the Indian economy (MoEFCC, 2018; GHG

Financial solvency remains the holy grail for the power sector and is key to the country's economic prospects Platform India, n.d.). Another significant imperative that involves coal burning is its impact on the optimum ambient air quality, as envisioned under the National Clean Air Programme. Combustion of coal in power plants contributes to 13 per cent of the ambient particulate matter (PM2.5) at a national level and accounts for a much higher share of PM2.5 in peninsular India and other pockets (Cropper et al. 2021). It is estimated that 112,000 deaths annually are attributable to air-borne pollution from existing and planned coal power plants in India (Cropper et al. 2021). In order to curb the emissions from coal power plants, the Ministry of Environment, Forest, and Climate Change (MoEFCC) notified stringent emission norms in December 2015 for various pollutants and set a deadline of December 2017 for adherence to these norms. The deadline was first extended to 2022 and, in the most recent notification in March 2021, the deadline for installing retrofits to control for SO, and NO. emissions have been pushed to 2025. It would have taken a full decade for plants to comply, if at all the power generators do (MoEFCC, 2015; CPCB, 2017; MoEFCC, 2021). In addition, more than a billion tons of pond ash has built up over decades and millions of tons of ash generated each year polluted the soil and water in the vicinity of these plants (CEA, 2020b). Seventeen major incidents of pollution resulting from improper ash handling and breaching of storage structures occurred in FY21 and adds to the burden of local communities (Kumar et al. 2021).

The issue of retrofitting of plants gave rise to the important debate of retirement of thermal assets. Many of the 166 GW of plants identified for pollution control retrofits were also indicated to be retired within this decade (by 2027), under the *National Electricity Plan* (NEP) (CEA, 2018) as it was deemed that it would not make commercial sense to retrofit them. In a study published in 2019 (Garg et al. 2019), we found that nearly 39 GW of capacity, which was indicated for retirement by 2027, would cost the system INR 14,300 crore in retrofits. At the fleet level, the health benefits of retrofitting and continuing the plant operations far outweigh the cost of retrofitting the plants in the longer run (Srinivasan, et al., 2018). But from a financial perspective, plant owners and regulators may show an unwillingness to resort to retrofitting. The latest notification, delaying the retrofit timelines to 2025, also allow plants that submit an affidavit that they would be retiring to continue operating with relatively small penalties, which would go up should they continue to operate beyond the timeline specified in the affidavit (MOEFCC, 2021).

Under the NEP, the CEA has proposed a phase-out plan with timelines for coal power plants in two tranches—22,715.5 MW by 2022 based on age and emission norms compliance and 25,572 MW by 2027 based on age as a criterion (CEA, 2018)—without really specifying if these plants can continue to operate beyond the specified timelines.<sup>1</sup> We establish in this study that many plants continue to operate well beyond the age limits specified in the NEP for plants to be retired. Many question age as a criterion, as older plants are still technically able to generate and provide competitive generation. However, there is dissonance in arguments made over the financial viability of pollution control retrofits that express doubt over continuing 'older' plants. It is then necessary to arrive at an objective and meaningful criteria through which the decommissioning plan should be pursued. This must take into account medium-term and long-term needs of the system and public health, and must necessarily result in cost savings and efficiency improvements for the power system.

The Indian power system is still in its growth phase and our dependence on coal-based generation is likely to rise over the course of this decade. However, even in such a system, it is important to assess opportunities to reduce dependence on coal. We have laid out the imperatives for such an effort, but the evidence that efficiency improvements in the system are indeed possible is what needs to be presented. We set out to find such opportunities to reduce the carbon intensity of India's coal-based generation and the additional benefits, if any, that emerge from such an exercise.



13% of the ambient PM2.5 pollution in India is attributable to power plant emissions



The environmental fall outs of fly-ash generated in power plants has been overlooked

<sup>1</sup> Nearly 4.4 GW of capacity out of this 48 GW has already been decommissioned as of 2018.

#### Objective

Given this background to the thermal generation fleet in India, in this study, we set out to assess the following:

- 1. How are thermal power plants utilised and what are the different ways of characterising their utilisation?
- 2. How efficient is the generation fleet and what are the drivers of efficiency and of variable costs of generation?
- 3. What opportunities exist for improving the efficiency of the thermal fleet?
- 4. Is an efficient fleet cost-effective and what implications does it have for phase-out (mothballing or decommissioning) of thermal assets?

## 2. Methodology and data



The methodology we use to assess plant performance begins with a descriptive assessment of plant capacities, generation, and variable costs of generation segmented by age and ownership of plants. We then attempt a regression-based parametric representation of plant efficiency, proxied by the station heat rate (SHR), as a function of average unit size in the plant, plant load factor (PLF), vintage (proxied by age), and the share of imported coal. In a second parametric representation, we attempt is to capture variable costs of generation as a function of delivered coal price, vintage, average unit size, auxiliary consumption and SHR (Equations 1 and 2).

#### SHR = Constant +B1\*Age+ B2\*Average\_Unit size + B3\*PLF+ B4\*Import share ...... (1)

#### Variable cost = Constant + B1\*SHR+ B2\*Delivered coal price+ B3\*Age + B4\*Average\_ Unit size + B5\* Auxiliary consumption ...... (2)

It is important to explain the choice of independent variables in this assessment. Some researchers contend that PLF is an outcome metric and in some sense may have a two-way causal relationship with SHR and variable cost. However, in theory, SHR is not considered in the way plants are dispatched today and plant loading is independent of any efficiency considerations. Equally in the case of variable cost, we see that mechanisms such as ancillary services compensate plants for flexible operation, which inherently suggests that PLF (a more aggregated metric) has an impact on the plant's variable costs. We also would like to reiterate that we pursue a regression analysis not for establishing causal relations but also for establishing a predictive expression with which we can predict the dependent variables under different counterfactual scenarios.

Further, and as the most important step, we propose a reallocation of thermal (coal) generation across stations. The reallocation assumes that the share of generation coming from other sources such as lignite, renewable energy (RE), hydro, gas, and nuclear remain untouched, that is, geographically and temporally they continue to deliver as much as they did in our study period. The reallocation of coal generation presents a counterfactual where power is dispatched from stations by using efficiency of generation to accord priority in a 'new merit-order'. Efficiency is represented by the estimated SHRs for stations. With the



We propose a counterfactual where plants are dispatched based on efficiency and not variable cost established parametric representation of SHR, we now determine SHR for the efficiencybased reallocation scenario.

SHR is estimated based on (exogenous) differential plant load factors that inherently give a leg-up to newer vintage plants. This was a logical step (and also corroborated in the parametric estimation) that newer plants far outperform older plants on efficiency (ceteris paribus). Also, this is an inherent and a necessary bias (towards newer plants) to ensure financially remunerative operations for newer plants that are yet to pay off much of their costs. This would go a long way in addressing the financial stress in the banking system by preventing newer plants from becoming non-performing assets (NPAs). Assigning higher operational hours (implicitly reducing the start–stop operations of plants) to newer plants further improves the overall system efficiency. The reassignment process is iterative and maximises utilisation based on a stack of plants ordered by efficiency, so as to fulfil the average generation requirement from coal-fired power plants over the analysis period.

The analysis considers plant operations over a 30-month period, starting from September 2017 to February 2020. Overall, as part of the assessment, we investigated 194 GW<sup>2</sup> of plant capacity that was operational and generating between September 2017 and February 2020. The highest resolution data available on generation was at the daily level but given that coal consumption could only be assessed at a monthly level (CEA, n.d.), we resorted to assessing all metrics at a monthly level. The highest resolution available in generation was at the plant unit level, but again coal consumption was more consistently available at the plant level (in some cases, stages of power plants) and hence we have considered this aggregated level as appropriate (typically through capacity weighting to arrive at plant-level metrics). Coal consumption was then converted into energy consumption, based on the delivered grade of coal to each power plant in each of these months (SEVA, n.d.). The conversion to energy units is critical, as physical units of specific coal consumption can be misleading in describing the plant efficiency. The variation in delivered calorific values across plants is presented in the Annexure (Figure A2). The first parametric estimation of SHR effectively uses 30 months of data across 129 thermal power plants, which amounts to 170 GW in generation capacity.

For the parametrisation of variable cost, the delivered coal price was estimated for all the plants using the supplied coal grades, mode, and distance of coal transportation data sets obtained from Coal India Limited Koyla Grahak Seva (SEVA) (SEVA, n.d.) and CEA daily coal supply reports (CEA, n.d.) respectively. We assumed rail tariffs for all transportation to non-pithead plants, given that a large share of coal transport is carried over rail for large segments and the costs of merry-go-round were used for pithead plants. The variable generation costs of plants, while available at a high daily resolution (MERIT, n.d.), were averaged to represent variable costs at a monthly resolution over the entire period in order to create a panel dataset across the 30 months.

Using this parametrised expression for variable costs, we evaluate the cumulative variable cost of generation in the original generation mix and the reassigned generation mix, to determine overall savings in variable costs associated with the generation. We attribute the total variable costs saving to the various components that we assess as being significant determinants of variable costs.

Finally, given that the allocation process does not factor in operational constraints that requires a more detailed assessment (higher time resolution and network constraints), we provide a high-level view of the changes to regional and state generation mix. In addition, we also assess the sufficiency of the generation capacity that is 'retained' in the model in catering to the needs of the system over the course of this decade.



Predictor equations for SHR and VC are used to assess the cost of generation in the reassigned scenario

<sup>2</sup> We do not consider the lignite-based generation capacity of 6 GW and a further 6 GW of coal-based capacity that was in early stages of commissioning and 4 GW capacity that was not generating at all in this period.

#### Methodology flowchart



Source: Authors' compilation



The overall efficiency of the coal over the 30 months of the analysis period was a low 29.7%.

# 3. Descriptive results and corollaries

In this section we discuss the descriptive findings of the assessment of the performance of the coal-based power plants. The assessment considers all plants that were operational in the 30-month period from September 2017 to February 2020. Nearly 194 GW of capacity is considered in the assessment. Following the descriptive assessment, we present the parametric representation of station heat rate (SHR) and variable costs (VC), which will then be used in assessing physical and financial performance for the reassigned generation mix, in the subsequent section.

#### 3.1 How are thermal power plants utilised?

Figure 1 illustrates the significant increase in power generation capacity. India has witnessed a huge capacity addition between 2010 and 2020. Nearly 65 per cent of the capacity as of March 2020 was installed in the previous ten-year period. We also note that 39 GW of capacity has been operating well past the economic life assumptions used in the determining the tariffs and returns on investment (CERC, 2014). Table 1 shows that half of the coal assets installed in the past decade have been done by the private sector. The remaining half of the installed capacity was equally shared between the central and state governments.



#### Figure 1 More than 125

GW of coal-based generation has been commissioned in the last ten years

Source: Authors' analysis from CEA daily generation reports 10

| Age group   | Central sector (%) | Private sector (%) | State sector (%) | Total (%) |
|-------------|--------------------|--------------------|------------------|-----------|
| 0-5 years   | 8                  | 9                  | 8                | 25        |
| 5-10 years  | 8                  | 24                 | 8                | 40        |
| 10-15 years | 3                  | 2                  | 4                | 10        |
| 15–20 years | 2                  | 0.1                | 1                | 4         |
| 20-25 years | 1                  | 0.4                | 2                | 4         |
| 25–30 years | 2                  | 0.3                | 3                | 5         |
| 30-35 years | 4                  | 0.1                | 3                | 6         |
| 35-40 years | 1                  | 0.3                | 3                | 4         |
| 40-45 years | 0                  | 0.1                | 1                | 1         |
| 45+ years   | 0.2                | 0                  | 0.4              | 1         |
| Total       | 30                 | 36                 | 34               | 100       |

 Table 1 Private sector investments have been the major driver of capacity addition in the last decade

Source: Authors' analysis of CEA monthly installed capacity reports

It would be expected that newer plants being more efficient should be generating a higher share of the electricity in the system (as compared to their capacity share), as there would be economic gains from efficient generation. However, Figure 2 shows that the plants less than 10 years of age contribute a lower share to the total generation (62 per cent) than to installed capacity (65 per cent). Concomitantly, older plants contribute a disproportionately larger share of the generation as is clear from the illustration. As we show, it is contracting and other factors that determine this, and not efficiency.

Figure 2 Generation share of young plants are lesser than their respective capacity shares



Source: Authors' analysis from CEA daily generation reports

In order to understand which segment of the plants are utilised poorly, we calculated a weighted average PLF for each category. Figure 3 indicates that the new plants have had very low PLF in the range of 40–60 per cent, while the older plants had high PLFs ranging between 75 and 85 per cent. On the whole, the state plants have been utilized less across age categories. The overall utilisation of the thermal fleet during the assessment period stood at a low of 58.5 per cent. This is clearly much lower than the envisioned PLFs for profitable operations of thermal assets.



#### Figure 3 State-owned plants show consistent under-utilisation across age groups

Source: Authors' analysis from CEA daily generation reports<sup>3</sup>

## 3.2 How efficient is the generating fleet of thermal power plants?

There is no consistent recording of data on the efficiency of thermal power plants at a high temporal resolution. What is available is an aggregate annualised metric, reported in tariff petitions filed by power plants and in an irregular CEA publication (with a lag of two years or more) that goes by the name 'Annual Thermal Performance Review'. Neither of these are useful to actually arrive at determinants of efficiency as many factors change over the course of a year and cannot be seen in aggregate. We set out to gather data on SHR at a higher temporal resolution. We accomplished it primarily by superimposing monthly coal consumption with the coal quality delivered, and then converting it to an efficiency metric by accounting for the electricity generated in each month.

The overall efficiency of the thermal operating fleet over the 30-month period stood at a paltry 29.7 per cent as per our calculations. The corresponding SHR was 2,898 kcal/kWh. This is particularly worrying as the improvement in the aggregate heat rate of the fleet over the years has not been commensurate with the pace of improvement in technology. This is not to say that plants did not operate more efficiently at all. A total of 29 plants exhibited an overall efficiency of more than 37 per cent (an SHR lower than 2,300 kcal/kWh) across many months in the analysis period. The median age of these plants was just a little over five years. Clearly, there are plants that are capable of performing more efficiently if the operations and circumstances allow them to.

The parametric estimation of determinants of SHR (kcal/kWh) was done through a panel regression with the independent variables being plant characteristics such as average unit size (MW), the average age of units (years), ownership (state or private, with central as the base), plant PLF (%), and share of imported coal in supply (%). We explored other variables such as measures of variability in (daily) plant loading, as theory suggests that deviation from base-load operation decreases plant efficiency. The daily variation

<sup>3</sup> No plants in the central-owned/40–45 years category and private-owned/45+ years category is currently functioning. Also, the total capacity in 15–20, 20–25, 25–30, 30–35, 35–40 and 40–45 age groups of private sector and 45+ group of state and central sectors are insignificant (less than 1 GW).

in loading did not seem to have any relationship with SHR. We present the results of the panel regression below.

| shr_kcalkwh      | Coef.      | Std. Err. | z      | P> z  | [95% Conf. | Interval] |
|------------------|------------|-----------|--------|-------|------------|-----------|
| avg_unitcapacity | 9257423*   | .1175411  | -7.88  | 0.000 | -1.156119  | 6953658   |
| - plf            | -330.5712* | 24.58023  | -13.45 | 0.000 | -378.7476  | -282.3948 |
| age_baseline     | 7.640537*  | 2.240974  | 3.41   | 0.001 | 3.248308   | 12.03277  |
| ownership_code   | I          |           |        |       |            |           |
| Private Sector   | -23.88326  | 63.81838  | -0.37  | 0.708 | -148.965   | 101.1985  |
| State Sector     | -73.21475  | 61.39452  | -1.19  | 0.233 | -193.5458  | 47.1163   |
|                  | I          |           |        |       |            |           |
| import share     | 225.4556*  | 92.20298  | 2.45   | 0.014 | 44.74112   | 406.1701  |
| cons             | 3417.812   | 80.99265  | 42.20  | 0.000 | 3259.069   | 3576.555  |

The assessment in Figure 4 suggests that younger plants and large unit sizes have a beneficial impact on SHR. A detailed plot on how SHR varies with age can be seen in Figure A1 of the annexure. Ceteris paribus, a 660 MW unit, in comparison to a 300 MW unit, will have a heat rate lower by 300 kcal/kWh. Given that super-critical units are also identified beyond a capacity threshold, they are alone not useful in explaining the variation and correlated with the average capacity metric. Similarly, a 10-year-old plant will have a heat rate that is 75 kcal/kWh lower than a 20-year-old plant. An improvement in PLF by 20 per cent (in absolute terms) improves the heat rate by 65 kcal/kWh. Clearly, the most significant impact is made by unit size, and newer vintage plants are of an increasingly higher size, as would be expected with technology development.

#### 3.3 Categorisation of the variable cost of coal plants

While the common perception is that older plants are cheaper because their fixed costs are paid for (discussed later in Section 4.2), what we see is that older plants are also often cheaper on a variable cost basis (Figure 5). On account of their lower generation efficiency, it would be expected that their cost of generation at the margin would be higher, but that is not the case. The variability, indicated in Figure 5, states that the age does not have clear implications for variable cost, given other factors at play.



#### Figure 4

Age, unit capacity, and PLF are key determinants of SHR

Source: Author's Analysis

Note: \* indicates significant at 95 per cent confidence level

#### Figure 5

Despite having low variable cost, the PLF of 5- to 10year group is low

Source: Authors' adaptation from CEA daily generation reports and Merit Order Despatch of Electricity for Rejuvenation of Income and Transparency (MERIT) state-wise daily summary data

*Note: The bubble size represents the capacity share of each age group*  Even in situations where younger plants, in line with efficiency arguments, have lower variable costs, we find that they are utilised to a lesser extent. How do we explain this? Discoms schedule power from the contracted generators based on the merit order dispatch (MoD) stack. Theory dictates that the generator with the lowest variable cost is dispatched first followed by the next lowest, and the iterative process continues until the energy or power demand is met, subject to technical constraints such as ramp rates and network capacity. The low PLF of certain plants (or vintages) should then reflect their (high) variable costs, indicating they are dispatched to a lesser extent. Interestingly, we see (Figure 5) that plants in the 5- to 10-year age group, which account for 40 per cent of the capacity share, despite having the lowest variable cost, have a lower PLF, compared to plants in the 20- to  $_{35}$ -year group. Similarly, plants in the o-5 years bucket, despite having a lower variable cost than some of the oldest plants, operated at plant load that was 20 per cent lower. These two observations can be explained by the fact that plants that are contracted (either entirely or partially) are dispatched only to the extent they are contracted, as per the MoD. The uncontracted capacity either is typically treated as merchant power and sold on the exchange or through other mechanisms. They contribute to just about 10 per cent of the total procurement of electricity in the country (CERC, 2020). A significant share of capacity of newer plants remains to be contracted and, as a result, they don't get dispatched often.

#### 3.3.1 What determines variable cost of generation at a plant?

On investigating the relationship between the variable cost and delivered cost of coal<sup>4</sup> (Figure 6), we found a high correlation between the two parameters. As expected, to a large extent, the delivered price of energy (INR/Mcal) is what determines the variable cost of electricity. This delivered cost of coal is largely a function of whether plants source coal from nearby mines or far away mines. Rail freight accounts for between 30 and 40 per cent of the delivered cost of coal (Kamboj & Tongia, 2018).



#### Figure 6

Variable cost of generation is driven to a large extent by delivered cost of coal

Source: Authors' analysis based on compilations from various generation tariff orders

However, in order to understand the determinants of variable cost (INR/kWh) more clearly, we carried out a linear regression-based assessment by considering independent variables such as auxiliary consumption (%), SHR (kcal/kWh), delivered coal price (INR/Mcal), average unit size (MW), and plant age (years). The results of the regression are presented in

<sup>4</sup> Delivered cost of coal = Coal price (INR/kg) / Gross calorific value of coal (kcal/kg).

Figure 7. We carried out this assessment for all the plants that have contracted capacity in part or full. Merchant generators are not considered in this calculation.

| wtd_vc           |  | Coef.     | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|------------------|--|-----------|-----------|-------|-------|------------|-----------|
| shr_kcalkwh      |  | .0001025* | .0000282  | 3.64  | 0.000 | .0000473   | .0001578  |
| del_energy_cost  |  | 1.890785* | .0334197  | 56.58 | 0.000 | 1.825259   | 1.956312  |
| age_baseline     |  | .0074045* | .0012114  | 6.11  | 0.000 | .0050293   | .0097797  |
| avg_unitcapacity |  | 0006019*  | .0000934  | -6.44 | 0.000 | 0007851    | 0004188   |
| aux_cons         |  | 2.827044* | .8023347  | 3.52  | 0.000 | 1.253896   | 4.400191  |
| _cons            |  | .6517435  | .1273899  | 5.12  | 0.000 | .4019686   | .9015184  |

We observed that coal price has the most significant impact on the variable cost of electricity. The average delivered coal prices were at INR 0.74/Mcal. A 0.1 INR/Mcal decrease in coal price would reduce the variable cost by 0.19 INR/kWh, which is a substantial change. A 1 per cent decrease in auxiliary consumption would lower the variable cost by 0.03 INR/kWh. Similarly, replacing a 200 MW unit by 500 MW unit in the energy mix would cut down the variable cost by 0.12 INR/kWh. Running young and efficient plants too reduces the variable costs.

Given the significant upside associated with low-cost coal, we investigated the distribution of coal prices for various vintages of plants (Figure 8). We find that the plants of youngest vintage face a significant burden of high-priced coal and, as explained earlier, given their low levels of contracting, they face a double whammy of not being desirable even in an exchange or in merchant mode.



#### 3.4 How does auxiliary consumption vary with vintage?

Another important implication of vintage in operational outcomes is the useful amount of energy that is actually available for commercial sale. Older plants have a higher auxiliary consumption, that is, power consumption within the plant itself (Figure 9). The same amount of energy, to be sold by a newer plant, would effectively require lesser generation to be undertaken, as more of the generated power will be available for sale. This in turn will reduce the amount of coal to be fired to generate electricity to that extent.

#### Figure 7

Other than coal price, age, unit size, SHR and auxiliary consumption were significant determinants of tariff

Source: Author's analysis

Note: \* represents variables that are significant at the 95 per cent confidence level.

#### Figure 8 Plants between

30 and 40 years of age access the cheapest coal

Source: Author's analysis based on multiple tariff orders of generation companies



#### Figure 9

Older plants consume a high percentage of power produced for its own operation

Source: Authors' analysis based on compilations from various generation tariff orders



Improving the efficiency of the coal fleet by 6%, would reduce the  $CO_2$  emissions by ~ 42 MT.

## 4. Results of generation reassignment and impacts

A sillustrated in the previous chapter, there are quite a few distortions in the way the power system is structured, giving rise to a thermal generation profile that is inefficient (as measured by the SHR), wasteful, and possibly proving to be expensive for the discoms and end-consumers. We demonstrate a high-level reassignment of generation across assets in a bid to improve efficiency and examine if such a reassignment leads to overall reduction in cost of power procurement.

To do this, we determine the SHR for all generation stations in the mix based by assigning a graded PLF to plants—highest for newest vintage to lowest for the oldest vintage plants (as explained in Chapter 2). The target PLFs are laid out in Table A1 of the Annexure. The parametric equation derived earlier to represent SHR is used in estimating SHR across plants. Given that they capture the typical operation of the power plant, there is significant slack in the PLFs to cater to a higher demand and leave some slack for considerations of peak demand or contingencies. The average daily generation requirement (median generation is about the same) over the 30-month period is considered for the reassignment. For the period September 2017 to February 2020, the average daily generation was 2,722 MU. We order the plants based on their evaluated SHR and assign generation to the plants, until their target PLFs are met. The generation need is met by the stack of plants. The generation stack will differ from the actual generation stack, as the dispatch criteria invoked in this exercise is generation efficiency and not variable cost or any other criteria.

We assess the individual variable cost of generation for plants by including the appropriate parameters into the parametric equation describing the variable costs (Equation 2, Chapter 2). We then evaluate the total variable cost of generating electricity, by summing up the individual generation cost of each dispatched plant in the efficiency stack order.

In our assessment, we have determined that nearly **50 GW of thermal generation capacity** is surplus to the requirements of daily average generation needs of the system in the 30-month period and are not called on to generate any electricity. Even while catering to the current demand, the requisitioned fleet is operating at an aggregate PLF of 78.9 per cent. The PLF of the generating thermal fleet was at 58.5 per cent in the base case, as explained already. The vintage profile of the plants retained in the generation stack and rendered surplus is as indicated in Table 2.



50 GW of coal-based capacity is potentially surplus to our needs

| Age group   | Total capacity<br>(MW) | Surplus capacity<br>(MW)       | % Rendered surplus |
|-------------|------------------------|--------------------------------|--------------------|
| 0–5 years   | 48,365                 | 605                            | 1%                 |
| 5–10 years  | 76,983                 | 5168                           | 7%                 |
| 10–15 years | 18,475                 | 8885                           | 48%                |
| 15–20 years | 7155                   | 3155                           | 44%                |
| 20–25 years | 7860                   | 5860                           | 75%                |
| 25–30 years | 10,646                 | 7146                           | 67%                |
| 30–35 years | 12,561                 | 7561                           | 60%                |
| 35–40 years | 8501                   | 8501                           | 100%               |
| 40-45 years | 2335                   | 2335                           | 100%               |
| 45+ years   | 1142.5                 | 1142.5                         | 100%               |
| Total       | 1,94,024               | 50,359 ( <mark>26,686</mark> ) | 26%                |

Table 2

Much of the older capacity is deemed surplus to the needs of the system in the analysis period

Source: Author's analysis Note: The ones indicated in red are older than 25 years, the economic life of plants as per CERC

The plants that have been identified as surplus to the needs of the system are listed in the annexure (Table A7). A discussion on their future prospects is provided later in Section 4.3.

We now focus on the implications of this reassignment on the overall efficiency of the generation fleet, coal savings, the overall cost of generation, the need for retrofitting with pollution control technologies, the regional and state-wise change in thermal generation profile, the ramping up capacity of thermal fleet, and finally, on the ability of the retained fleet to support future demand.

## 4.1 Implications for efficiency, coal consumption, and variable cost of generation

On reassignment, we find an overall improvement in efficiency, in relative terms, of about 6 per cent. The SHR of the fleet as a whole would improve from 2,898 kcal/kWh to 2,719 kcal/ kWh. This translates into an absolute improvement in the efficiency of generation from 29.7 per cent to 31.6 per cent. This is a logical and expected outcome, as plants are now being dispatched based on an efficiency stack order and not a variable cost stack order. Many older (by age) plants that are low on efficiency are not requisitioned any more.

This is expected, because of the overall improvement in efficiency and how it bears a linear relationship with energy input (expressed in kcal). The total reduction in coal consumption stands at 42 MT (6 per cent reduction) of coal. Figure 10 shows that plants that are over 30 years of age consume over 104 MT of coal annually. As most of these plants are not requisitioned in our reassignment, they contribute to a large extent to the savings on coal.



#### Figure 10

In the base case, 15 per cent of total annual coal requirement comes from plants over 30 years of age

Source: Authors' analysis based on CEA monthly coal statement How does savings on coal contribute to variable costs? We further evaluate the variable cost savings by computing the difference between total cost of generation in the actual scenario and the reassigned scenario. To do this, we use the parametric estimation equations we arrived at, as described in Chapters 2 and 3. We rewrite the expression representing variable costs (Equation 2, Chapter 2) as follows:

Variable cost = Constant + B1\*SHR+ B2\*Delivered coal price+ B3\*Age +B4\*Unit size+ B5\* auxiliary consumption ...... (2)

### Delta\_variable cost = Delta\_SHR + Delta\_Delivered Coal Price + Delta\_Age + Delta\_Unit size + Delta\_auxiliary consumption ...... (3)

In order to assess the difference in total variable cost of generation in each scenario, and the contribution from the various determinant (significant) factors, we rejig Equation 2 to the form of Equation 3. In Equation 3, the total quantum of generation from each plant in each scenario is already factored in. From this equation, we find that the contribution of efficiency as represented by the SHR term is INR 1,968 crore. Other variables like age and unit size, which are also the determinants of SHR (as shown in Equation 1, Chapter 2), contribute around INR 11,214 crore.

The impact of delivered coal price is negative, as expected, as the price of coal to new plants in the efficient stack is higher than in the base case. The loss as a result of increase in the delivered price of coal is INR 5,133 crore. The reassigned fleet also has a significantly lower auxiliary consumption, as many of the older plants are not generating as much anymore. The savings associated with improved auxiliary consumption performance of the fleet amounts to INR 916 crore. As per our assessment, the total variable cost savings were evaluated to be INR 8,944 crore. The formulation of the parametric representation of variable cost can be rethought by collecting more data and further disaggregation, which might shift the balance of contribution of different factors.

#### 4.2 Implications for investment in pollution retrofits

For continued operation of plants, beyond their economic life, they need to comply with environmental norms, specifically for pollutant emissions such as sulphur oxides  $(SO_x)$ , nitrogen oxides  $(NO_x)$ , and particulate matter (PM). As per the norms laid out for power plants in the 2015 notification by the MoEFCC (MoEFCC, 2015), nearly 166 GW worth of capacity was identified as needing to install pollution control retrofits, specifically flue gas desulphurisation systems (FGD) to control for  $SO_x$ . This has been an issue of major contention, as plants have been slow to comply with the norms. This situation was further aggravated by state electricity regulatory commissions (SERCs) showing a lax attitude and uncertainty in implementing (in letter and spirit) the 'change in law' provision that this notification brought in. Even those plants that have desired to be in compliance and began the process in earnest were ensnared in process and legal bottlenecks (APTEL, 2020).

At the core of the morass, that is the retrofitting process for compliance, is the unwillingness of actors across the board to invest and allow for investments to be recouped from the customer. It is deemed to be a burden on a consumer base that is already unwilling to pay for electricity service provision (PFC, 2020; Aggarwal & Ganesan, 2020; Banga, 2018). The most recent notification from MoEFCC (MoEFCC, 2021), allowing for a further delay in retrofits till 2025 is a further indication of the unwillingness of policymakers to push the plants for compliance and the lax implementation regime. However, given the implications for human health, of continued emissions from power plants, it is imperative that a middle ground will have to be found for ways to efficiently and expeditiously install retrofits.



In catering to our current level of demand, 42 MT of coal can be saved by improving efficiency of generation



The delivered coal price of the reassigned fleet is higher than the base case, as the coal transportation distance increases In a 2019 study, we found that 39 GW of capacity, which was indicated for retirement by 2027, would cost the system INR 14,300 crore in retrofits for reining in  $SO_x$  emissions (Garg et al. 2019). An assessment of the plants that were deemed surplus to the needs, in this study, suggested that nearly 35 GW of capacity of the identified surplus 50 GW was part of the CEA notification to meet the new emissions standards. Of this 35 GW, only 1.5 GW complies with the emissions norms and has installed flue gas desulphuriser (FGD) systems. The remaining plants are at various stages of the process (of compliance) while a bulk of the plants (more than 60 per cent) are yet to issue any formal tender to a potential contractor. Details of the various stages at which plants are in the process of installing retrofits is indicated in Table A9 in the Annexure.

We find that if this 33.5 GW worth of plants are deemed surplus, the costs involved in retrofitting these plants can be considered as a saving, though it is a one-off saving. The total cost of retrofitting these plants was estimated to be INR 10,250 crore, based on the same methodology used in Garg et. al (2019). The savings are primarily from avoiding retrofits for FGD in these non-operational plants.

#### 4.3 Overall implications of reassigning the generation mix

Our assessment finds that the reassigned generation mix provides for the same demand as in the base/actual scenario, with INR 8,944 crore lower variable cost. A significant portion of this savings is attributable to the savings from avoided coal consumption, on account of higher energy efficiency of the system. The reassignment prevents nearly 42 MT of coal from being unnecessarily consumed annually and also proportionately reduces the GHG and criteria pollutant emissions and generation of fly ash. Additionally, we find that onetime savings of INR 10,250 crore in avoided pollution retrofit costs can also be made. This of course does not capture the recurring benefits of avoided variable costs in pollution abatement from these plants that are deemed surplus.

In earlier sections (and indeed throughout the report) we refer to the reassigned scenario (based on an efficient stack) and to plants that are deemed surplus to the requirements of the reassigned scenario. However, we have stopped short of commenting on what happens to these plants that are deemed surplus. The plants that are not dispatching in the reassigned scenario will continue to service the debt obligations, have fixed operation and maintenance (O&M) expenditure of plants (including salaries for staff), and general up-keep of the facility. These costs will remain the same in the actual and reassigned scenario. The CEA, in the *National Electricity Plan* (2018), has specified a clear timeline for decommissioning coal-based assets to the extent of 42 GW by 2027. We find that 30 GW of capacity that has been identified as surplus in our analysis also finds place in the CEA's assessment for decommissioning by 2027. **This 30 GW of capacity must necessarily be considered for accelerated decommissioning**, possibly before the CEA timelines to realise savings explained before. Additional savings could be realised from decommissioning these plants, through sound financial engineering, which captures the value of reducing risks from future cash-flow challenges for these assets if they are decommissioned now than later.

A further 20 GW of capacity that we have identified as surplus in our analysis primarily consists of plants that are younger than 25 years (as of February 2020). There is clearly a use case for these plants, though they were deemed surplus to the needs of the system based on efficiency considerations. For these plants, a **temporary moth-balling could be considered** and they would not be requisitioned or considered in the MoD stack by load dispatch centres, unless and until there is a clear need for this capacity to come online. Again, given that fixed cost payments will continue to be made to these facilities, we expect that the general up-keep of the facility will be possible and the plants will be able to come online, with sufficient notice and preparations.



More than INR 10,000 crore in savings from avoided pollution control retrofits, in favour of early decommissioning

#### 4.4 Implications for technical operations of the grid

As assessed earlier, the main outcome of the reassignment was to designate a set of plants as being surplus to the needs of the system catering to the 'average energy demand' over the last 30-month period. In the process, nearly 50 GW worth of generation capacity was designated as being surplus (some to be decommissioned and some moth-balled, as detailed above). The overall PLF of the generating fleet increased by nearly 20 per cent in the process as expected. However, given that the reassignment did not really consider any network-related constraints, we make an assessment using high-level metrics to understand some key implications of such a reassignment exercise.

A critical assessment is to see how the generation profile changes across the different regions of the country. We find that the Southern region would show a significant increase in overall generation by almost 11 per cent in the reassignment scenario. Concomitantly, the Eastern and Northern regions are expected to record a decrease in generation by 9 per cent and 6 per cent, respectively. The Western region would see a marginal increase of 3 per cent in generation (Table A3). While these changes in regional generation throw up concerns over the ability to move power between the regions, we see that over the course of the last 30 months, the individual regions have generated much larger amounts of thermal energy and also contributed a much larger thermal share to the grid than in the reassigned scenario (Table A8). At the day-level resolution, we see that these changes do not pose an operational challenge to the grid. However, the reassignment needs to be investigated at a higher temporal resolution to assess if such a shift in regional distribution of generation is likely to disrupt the system.

While regional considerations are important in system operations, from the perspective of individual discoms and states, exercising control over generation sources is perceived to be important. As there is a significant decrease in operational capacity (required) in the reassigned scenario, states across the board would see a reduction in their generation base. Nearly 60 per cent of the reduction in capacity in the reassigned scenario is attributed to the state-owned plants. Clearly, these plants were most inefficient in the stack and did not get requisitioned. In states like West Bengal and Rajasthan, this is most pronounced with more than 40 per cent decrease in overall installed capacity. Most states would witness a decrease in capacity between 20 and 30 per cent. However, states like Odisha, Haryana, Madhya Pradesh, and Assam are likely to experience lower levels of change (<20 per cent) to their capacity base. Further, state-owned plants are also likely to witness a 23 per cent reduction in generation from the base scenario. States such as Jharkhand, Chhattisgarh, Gujarat, Tamil Nadu, and Punjab may even experience a 40 per cent reduction in the generation from stateowned plants. Given that overall generation must remain constant across both scenarios (as they serve the same demand), for most states, the loss in generation from state-owned plants is made good by increased generation from private sector plants (Table A5). States like West Bengal would encounter a significant erosion (31 per cent) of overall generation within the state boundary, while Karnataka would notice a drastic rise in power generation (85 per cent). Barring these exceptions, overall generation changes within state boundaries are within  $\pm 20$  per cent (Table A4).

Over and above the split in generation across different regions, states, and ownership types, it is also important to address if some important attributes like system ramping capabilities change significantly as a result of this reassignment and consequent moth-balling of capacity. With the non-availability of many older units, it is expected that ramping capacity would decrease, as older units have published (and theoretical?) ramping rates that are higher than units of a newer vintage. We find that at the national and regional level, the ramping capacity changes may see a perceptible dip of nearly 26 per cent. At the national level, the ramping (up and down) capacity drops from 1,600 MW/min to 1,200 MW/ min



In the reassigned scenerio, the overall PLF improves to 79% from the baseline of 59%



Generation in the Southern region increases by nearly 11%, but a high level assessment does not suggest operational challenges from this (Table A2). High temporal resolution dispatch data (15-minute time block) is available only for centrally owned inter-state generating stations (ISGS). We analysed the operations of the ISGS stations that are deemed surplus in our reassignment (~7.5 GW) and found that 3.5 GW of this capacity is used for ramping during peak hours to cater the peak demand<sup>5</sup>. The list of ISGS plants can be found in Table A10 of the annexure. However, it is worth mentioning that, for the most part, the observed peak ramping rates of the system over the last operational year saw the thermal fleet utilising only a fraction (5 per cent) of this ramping capacity (MERIT, n.d.). Importantly, most state-owned plants also do not contribute significantly to the ramping needs of the system presently and as a result, even in a reassigned scenario, we do not foresee a paradigm shift in the way the system ramping would be managed.

The discussion on ramping then brings us to the important question of what about contribution of thermal assets to the peak demand in the country? It is well known that, given the absence of 'peaker plants', we rely on our thermal coal plants to cater to the peak demand for several months. The demand surges typically during the evening and night hours and RE is not able to provide the matching supply. The system we are left with, in the reassigned scenario, has a total operational coal capacity of 143 GW. The actual peak contribution of thermal power plants, in the assessment period, is 140 GW. This clearly suggests that at the peak, the coal generation fleet has little slack to cater to any further increases in peak demand. However, the capacity considered in this assessment excluded nearly 6 GW of lignite-based capacity and 5.7 GW of coal assets that were in the early stages of commissioning over the assessment period. This again suggests that system would be able to cater to the peak load

## 4.5 Implications for supply and adequacy in future years (2020–2030)

The final aspect of our evaluation is to assess how much of the demand in the later years of this decade will the retained plants be able to cater to? Here we consider future demand projections as envisioned in the NEP (CEA, 2018) and the CEA's Optimal Generation Mix Study for 2030 (CEA, 2019). As proposed earlier in this chapter, we envision that of the 50 GW of capacity identified as surplus, 30 GW must be primed for decommissioning at the earliest, while 20 GW of generation capacity is of a newer vintage that might still be beneficial to the system from an operations perspective or to cater to sudden (or gradual) growth in demand. While assessing system adequacy in catering to the overall demand (not necessarily from a network operations perspective), the retained fleet of 143 GW of capacity will be considered, in tandem with the proposed moth-balled capacity (20 GW) and any new capacity that will be added online from February 2020.

On new capacity that is under construction, we rely on existing data from CEA on the status of such plants. The latest report available suggests that a total capacity of 60 GW is under construction as of February 2020 (CEA, 2021). Of this 60 GW, specific timelines for construction and commissioning (acknowledging delays) have been proposed only for 36 GW of capacity. The construction of remaining 24 GW of capacity is either on hold, the assets are stressed, or there is uncertainty about the future progress of the construction or commissioning.



While theoretical ramping capacity (MW/min) sees a dip of 26%, only 3.5 GW of capacity that is actually used for ramping purposes is shelved in the reassigned scenario

<sup>5</sup> The ISGS dispatch data is available in the public domain only from June 2020. Hence, the analysis was done for the period January – February 2021 and does not overlap with the analysis period (September 2017 – February 2020).

As mentioned earlier, in addition to the 143 GW of capacity retained in the analysis, there is an additional 12 GW of lignite and coal-based capacity (existing) that was not considered in the assessment. In total, we forecast 175 GW<sup>6</sup> of capacity as *potentially* available to supply to the system, through the rest of this decade, excluding any new capacity that might come on board from the projects under construction.

As per existing projections made in recent studies by the CEA, the share of coal in overall generation reduces from 68 per cent in 2022 to 62 per cent in 2027 and 58 per cent in 2030. In absolute terms, the generation from coal is expected to rise over the years. We find that, even by just considering the active 143 GW and moth-balled capacity (of 20 GW), the generation from this limited coal fleet is able to provide for 108 per cent of the average supply expected from all-coal assets in 2022 and 77 per cent of the supply expected from all-coal assets in 2030. If we consider days when the demand from coal is at its peak (winters and late monsoon period), we find that this limited coal fleet is able to provide 91 per cent of the peak supply expected from all-coal in 2022 and 66 per cent of the peak-supply expected from allcoal in 2030 (Table A6). With significant capacity of coal going to be made available to the system in the later years of the decade, we assess that the retained fleet is able to contribute disproportionately to the needs of the system. Experts are sceptical that the aggressive rollout of 450 GW of RE by 2030 may not happen as the economy in the post-COVID scenario is likely to experience some teething issues, deflating some of the growth potential for all sources of energy generation. Equally, it can be expected that a sluggish economic growth would also dent the electricity demand as well in such a scenario. It is also more likely that the under-construction coal assets would see the light of day (given the significant resources already expended) at the expense of new RE capacity, the costs of which may not be justified (notwithstanding climate commitments). Under the various scenarios that could pan out in future, as explained, we are confident that the retained coal capacity would be sufficient and would contribute more than its fair share to the supply that would be expected from all coal assets over the course of this coming decade.



The retained thermal capacity and new generation capacity on boarded in this decade is sufficient to meet projected electricity demand

<sup>6 143</sup> GW retained from the original starting point of 194 GW + 12 GW of capacity not considered in the assessment + 20 GW of capacity that is moth-balled (from the 194 GW).



Prioritising efficiency could help destress generation assets and bring in fresh investments to the power sector.

# 5. Conclusions and recommendations

In this important study, we set out to examine the composition of the thermal (coal-based) generating fleet currently in use in the Indian power system, propose possible efficiency improvements, and the resulting financial and economic benefits from such improvements. We proposed a novel parametric estimation-based approach to characterise the efficiency of the thermal fleet and its variable cost structure. The parametrised functions further helped propose a dispatch stack that was based on energy efficiency of electricity generation and the costs associated with such a dispatch stack.

We found that at the aggregate level, an efficiency-based dispatch stack makes 50 GW of generation capacity redundant and surplus to the needs of serving the average demand over the analysis period (September 2017 to February 2020). The overall PLF of the fleet improves drastically from 59 to 78 per cent. The efficiency of the overall dispatch, in the reassigned scenario, is higher by about 6 per cent and the overall SHR falls to 2,719 kcal/ kWh. In other words, the efficiency of the fleet improves from 29.7 to 31.6 per cent. A direct consequence of this efficiency improvement is that the overall coal consumption associated with generation drops (almost proportionately) and results in a coal savings of 42 MT of coal annually, on a base of 679 MT. This would translate to CO2 emissions savings of to the tune of 42 MT annually and significant reduction in criteria pollutant loading as well. The financial implications of this efficiency-based reassignment of generation and savings in auxiliary consumption. There is also an opportunity for a one-time saving of INR 10,250 crore in avoided retrofit costs for plants that are part of the efficient generation stack.

On the critical question of what we propose to do with the identified surplus capacity, we arrived at a two-pronged solution. Around 30 GW of capacity, which overlaps with the plants identified in the NEP for retirement by 2027, must be considered for accelerated decommissioning, given the economic and environmental benefits associated with them not requiring to generate power. Each passing year of delay in letting them continue to generate implies that the system becomes more expensive and emission-intensive as a whole. Based on the financial solutions that we can come up with, decommissioning could also result in savings of the fixed cost outlays over the course of the remaining (contractual) life of these assets. For 20 GW of capacity that represents plants of a newer vintage and not identified for retirement in the NEP, we propose a temporary moth-balling of these facilities. Given that fixed cost payments are contractual obligations and must be made, we envision that these facilities will continue to be available for the system should the need arise. Given the uncertainty in demand outlook post-COVID and the trajectory of RE growth over the course of the decade (despite the aggressive target of 450 GW by 2030), the availability of these



A reassigned scenario yields variable costs savings of ~INR 9000 crore a year plants, over and above those that are under construction, provides a cushion for operational contingencies and supply adequacy. In the worst-case scenario, if they were to remain idle for the rest of their lives, it would still be a beneficial outcome, for the end-consumers and discoms, as they are anyway inefficient and the system is better off relying on other plants.

While the reassignment exercise did not consider any operational constraints associated with the grid, we performed an evaluation using high-level metrics that gave a glimpse of the operational disruptions that the reassignment exercise could pose. The slack in the system is obviously lower, with the fleet PLF going up to 78 per cent, which would require more efficient coordination on part of the system operator. State-owned generation assets account for 60 per cent of the capacity that is rendered surplus. The system is now more reliant on private sector plants and, as a result, the cushion of payment delays to state-owned plants that currently prevails would drastically come down. The impact of reassignment on states is uneven, with significant capacity reduction in West Bengal and Rajasthan. In generation terms, West Bengal is likely to experience a significant decline in overall generation of more than 40 per cent and Karnataka would witness a rise in generation by 85 per cent. The change in generation mix to a younger fleet also means that technical ramping capacity is also reduced. Given that the system today uses only a fraction of the capacity that is available in surplus, we conclude that this is not a significant barrier to the overhaul of the generation mix.

On the two important questions of adequacy of such a system to cater to peak demand and for supply in the future years, we find a significant slack in the system by way of the additional capacity that we have not considered in the analysis—lignite plants (6 GW), newly commissioned coal-based capacity (5.7 GW), and plants under construction that are likely to come on board in this decade (36 GW). Over and above these capacity additions, the option to moth-ball 20 GW of capacity provides a ready breathing space for the system, should the need arise. However, rigorous assessment of the demand over the coming years and planning for operational dispatch bottlenecks would help ascertain the extent to which these redundancies would have to be made use of in case of an unexpected surge in demand.

The main takeaway from this exercise is that a unified electricity market, which treats the entire country as one dispatch region, is a desirable one. We echo the recommendations of Central Electricity Regulatory Commission (CERC) discussion paper on the redesigning of the day-ahead market for electricity and a focus on a shift to market-based economic dispatch (MBED) and move away from bilateral scheduling of generation (CERC, 2018). As India attempts to make a shift towards MBED, the need to assess efficient assets becomes even more important and the culling of surplus assets is implicit in the process. However, for this to happen, there is a fundamental change that is needed—the sanctity of variable costs in the Indian power system must be questioned. Given the distortions in the fuel market, lopsided fuel availability and the unequal bargaining power of various actors in the system, we are unable to have a system where the lowest cost system is also the most efficient in terms of thermal efficiency.

India has made ambitious commitments to reduce GHG emissions on account of global agreements and the health emergency that our population faces on account of sustained levels of air pollution, to which thermal power plants contribute significantly, imply that it is in our interest to reduce coal use, in every way possible. While India's reliance on coal is likely to continue and rise over the course of this decade, there is a need to examine the opportunities that exist in the power sector today to rein in wasteful coal use. The overall generation efficiency of the fleet currently points to a lack of emphasis on efficiency, despite the power sector being strongly regulated with clear requirements for adhering to design efficiency standards.



The NEP also identifies these 30 GW of capacity for decommissioning by 2027. This must be accelerated to realise these savings



Despite the increase in consumption of coal, this approach helps rein in coal dependence and eases financial pressure on the system The overall financial savings associated with the reassignment exercise (in 'ooos of crore) is paltry when compared with the annual expenditure on procurement of electricity (in the 'ooooos of crore). However, what is crucial and has ramifications for the system as a whole is the ability to breathe new life into the system by decommissioning and moth-balling inefficient assets and giving new life to efficient but stranded assets that can then provide for relief to the banking system, by creating cash flows for stranded assets and slowly but surely resolving the NPA issue. The surplus capacity issue in the Indian system is likely to persist over the course of this decade and this exercise must be taken up officially. More temporally resolved data needs to be used to detail the challenges in achieving the outcomes outlined. Enabling a financially solvent power system can help in moving the power sector to the next step to address more pressing issues of energy transition.

## References

- Aggarwal, P., and K. Ganesan. (2020). *Revisiting and resolving Discoms' legacy issues (Navigating India's Power Crisis During Covid-19)*. Retrieved from Council on Energy, Environment and Water: https://www.ceew.in/blogs/revisiting-and-resolving-discoms-legacy-issues
- Aggarwal, P., K. Ganesan, and D. Narayanaswamy (2020). *Cost-effectiveness of Discom Operations in Uttar Pradesh: Impact of UDAY, Power Purchase Planning and Dispatch*. New Delhi: Council on Energy, Environment and Water.
- Aggarwal, P., A. Viswamohanan, D. Narayanaswamy, and Sharma, S. (2020). *Unpacking India's Electricity Subsidies: Reporting, Transparency, and Efficacy*. Ottawa: International Institute for Sustainable Development.
- APTEL. (2020). *Appellate Tribunal for Electricity*. Retrieved from https://aptel.gov.in/sites/default/files/A.No.%20 101%200f%2020\_13.11.20.pdf
- Banga, S. (2018, April 25). *Demystifying Power Tariffs: An Imperative for Electricity Sector's Growth*. Retrieved from ET Energy World: https://energy.economictimes.indiatimes.com/energy-speak/demystifying-power-tariffs-an-imperative-for-electricity-sector-s-growth/3002
- Bharadwaj, K., K. Ganesan, and N. Kuldeep (2017). *Retail Tariffs for Electricity Consumers in Bangalore: A Forward Looking Assessment*. New Delhi: Council on Energy, Environment and Water.
- CEA. (2015). Growth of Electricity Sector in India from 1947–2015. New Delhi: Ministry of Power.
- CEA. (2018). National Electricity Plan. New Delhi: Ministry of Power.
- CEA. (2019). Draft Report on Optimal Generation Capacity Mix for 2029–30. New Delhi: Ministry of Power.
- CEA. (2020a). CEA—Monthly Installed Capacity Report. New Delhi: Central Electricity Authority.
- CEA. (2020b). *Report on Fly Ash Generation at Coal/Lignite Based Thermal Power Stations and Its Utilization in the Country for the Year 2019–20.* New Delhi: Ministry of Power.
- CEA. (2021). Monthly Broad Status Report. New Delhi: Ministry of Power.
- CEA. (n.d.). CEA Daily Coal Supply Report. Retrieved from https://cea.nic.in/daily-coal-reports/?lang=en
- CEA. (n.d.). CEA Monthly Coal Statement. Retrieved from https://cea.nic.in/fuel-reports/?lang=en
- CERC. (2014, February 21). Retrieved from http://cercind.gov.in/2014/regulation/reg21.pdf
- CERC. (2018). *Discussion Paper on Market Based Economic Dispatch of Electricity: Re-designing of Day-ahead Market (DAM) in India*. New Delhi: Central Electricity Regulatory Commission.
- CERC. (2020). *Monthly Report on Short-Term Transactions of Electricity in India*. New Delhi: Central Electricity Regulatory Authority.
- Chikkatur, A. P., and A. D. Sagar (2007). *Cleaner Power in India: Towards a Clean-Coal-Technology Roadmap*. Cambridge: Belfer Center for Science and International Affairs.
- Chitnis, A., S. Dharmadhikary, S. Dixit, S. Dukkipati, A. Gambhir, A. Josey, . . . A. Sreenivas (2018). *Many Sparks but Little Light: The Rhetoric and Practice of Electricity Sector Reforms in India*. Pune: Prayas Energy Group.
- CPCB. (2017, December 11). Retrieved from Central Pollution Control Board: https://cpcb.gov.in/uploads/ direction/Part\_1\_21.12.2017.pdf
- Cropper, M., R. Cui, S. Guttikunda, N. Hultman, P. Jawahar, Y. Park, . . . X.-P. Song (2021). The Mortality Impacts of Current and Planned Coal-Fired Power Plants in India. *Proceedings of the National Academy of Sciences of the United States of America*, Vol 118, 7.
- Das, N., A. Dabadge, M. Chirayil, M. Mandal, and A. Josey (2019). *Elephant in the Room: Implication of Subsidy Practices on DISCOM Finances*. Pune: Prayas Energy Group.
- Dubash, N. K., and S. C. Rajan (2001). The Politics of Power Sector Reform in India. World Resources Institute.
- ETEnergyWorld. (2019, August 30). NTPC Commissions India's First Ultra-Super Critical Plant in MP. New Delhi.

- Garg, V., D. Narayanaswamy, K. Ganesan, and B. Viswanathan (2019). *India's Energy Transition: The Cost of Meeting Air Pollution Standards in the Coal-Fired Electricity Sector*. Ottawa: International Institute for Sustainable Development.
- GHG Platform India. (n.d.). GHG Platform India. Retrieved from http://www.ghgplatform-india.org/

IEA. (2020). India 2020. Paris: International Energy Agency.

- Josey, A., S. Dixit, A. Chitnis, and A. Gambhir (2018). *Electricity Distribution Companies in India: Preparing for an Uncertain Future*. Pune: Prayas Energy Group.
- Josey, A., M. Mandal, and S. Dixit (2017). *The Price of Plenty: Insights from 'Surplus' Power in Indian States*. Pune: Prayas Energy Group.
- Kamboj, P., and R. Tongia (2018). *Indian Railways and Coal: An Unsustainable Interdependency*. New Delhi: Brookings India.
- Kumar, P., J. Gajapriya, N. George, D. Moorthy, S. Narayan, R. Dutta, and D. Shah (2021). Coal Ash in India 2020– 21: An Environmental, Social and Legal Compendium of Coal Ash Mismanagement in India. Chennai: Health Energy Initiative India.
- MERIT. (n.d.). *Merit Order Despatch of Electricity for Rejuvenation of Income and Transparency*. Retrieved from http://meritindia.in/
- MoEFCC. (2015, December 7). Retrieved from The Gazette of India: http://egazette.nic.in/ WriteReadData/2015/167141.pdf
- MoEFCC. (2018). *India: Second Biennial Update Report to the United Nations Framework Convention on Climate Change*. New Delhi: Ministry of Environment, Forest and Climate Change.
- MoEFCC. (2021, March 31). Retrieved from The Gazette of India: http://www.egazette.nic.in/ WriteReadData/2021/226335.pdf
- MoP. (2020, April 24). Power Sector at a Glance All India. New Delhi.
- MoP. (2021). *Seeking Comments on Discussion Paper on Market Based Economic Dispatch (MBED)*. New Delhi: Ministry of Power.
- Parray, M. T., and R. Tongia (2019). *Understanding India's Power Capacity: Surplus or Not, and for How Long?* New Delhi: Brookings India.
- PFC. (2020). Report on Performance of State Power Utilities 2018–19. New Delhi: Power Finance Corporation.
- PRAAPTI. (n.d.). PRAAPTI. Retrieved from https://praapti.in/
- PTI. (2019a, October 16). India's Aim of Being a \$5 Trillion Economy 'Challenging' but 'Realisable': Nirmala Sitharaman.
- PTI. (2019b, December 30). Power Discoms Faced Losses Worth Rs 27000 Crore in FY19: Power Minister R. K. Singh.
- Rajasekhar, D., and R. Tongia (2020). *Reconciling DisCom 'Stimulus' and Dues: Looking beyond the Tip of the Iceberg.* New Delhi: Centre for Social and Economic Progress.
- SEVA, C. (n.d.). Retrieved from https://elib.cmpdi.co.in/SEVA/
- Srinivasan, S., N. Roshna, S. Guttikunda, A. Kanudia, S. Saif, and J. Asundi (2018). *Benefit Cost Analysis of Emission Standards for Coal-based Thermal Power Plants in India*. Bengaluru: Center for Study of Science, Technology and Policy.
- Tongia, R. (2003). *The Political Economy of Indian Power Sector Reforms*. Stanford, CA: Program on Energy and Sustainable Development, Stanford University.

## Annexure

| Age group   | Target PLF in reassigned scenario (%) |
|-------------|---------------------------------------|
| 0–5 years   | 85                                    |
| 5–10 years  | 85                                    |
| 10–15 years | 80                                    |
| 15–20 years | 75                                    |
| 20–25 years | 70                                    |
| 25–30 years | 65                                    |
| 30–35 years | 60                                    |
| 35–40 years | 55                                    |
| 40-45 years | 55                                    |
| 45+ years   | 55                                    |

#### Table A1 Target PLFs assigned to the units in the reassigned scenario

Source: Authors' analysis

Table A2 The system becomes less flexible in the reallocated scenario losing out on 26 per cent of the ramping capabilities

|                            | Actual s            | scenario              | Reassigned scenario |                       |  |
|----------------------------|---------------------|-----------------------|---------------------|-----------------------|--|
| Region                     | Ramp up<br>(MW/min) | Ramp down<br>(MW/min) | Ramp up<br>(MW/min) | Ramp down<br>(MW/min) |  |
| Eastern Region (ER)        | 289                 | 279                   | 207                 | 199                   |  |
| North-Eastern Region (NER) | 1                   | 1                     | 1                   | 1                     |  |
| Northern Region (NR)       | 408                 | 363                   | 289                 | 257                   |  |
| Southern Region (SR)       | 311                 | 322                   | 231                 | 239                   |  |
| Western Region (WR)        | 648                 | 656                   | 494                 | 501                   |  |
| Total                      | 1657                | 1621                  | 1223                | 1198                  |  |

Source: Authors' analysis based on the POSOCO report on ramping capabilities of coal-fired generation in India

#### Table A3 Southern region generates 11 per cent more in the reallocated scenario

| Region | Actual scenario (MU) | Reassigned scenario (MU) | Difference from actual (%) |
|--------|----------------------|--------------------------|----------------------------|
| SR     | 496                  | 548                      | 11                         |
| NR     | 570                  | 535                      | -6                         |
| ER     | 488                  | 444                      | -9                         |
| WR     | 1158                 | 1188                     | 3                          |
| NER    | 11                   | 9                        | -16                        |

Source: Authors' analysis based on CEA daily generation reports

| State          | Total<br>capacity—<br>actual<br>scenario<br>(MW) | Actual<br>generation<br>(MU) | Total<br>capacity—<br>reassigned<br>scenario (MW) | Reassigned<br>generation<br>(MU) | Difference in<br>generation<br>from actual<br>scenario (%) |
|----------------|--------------------------------------------------|------------------------------|---------------------------------------------------|----------------------------------|------------------------------------------------------------|
| Andhra Pradesh | 11,290                                           | 156                          | 8380                                              | 168                              | 7                                                          |
| Assam          | 750                                              | 11                           | 750                                               | 9                                | -16                                                        |
| Bihar          | 6040                                             | 95                           | 4675                                              | 85                               | -10                                                        |
| Chhattisgarh   | 22,723                                           | 315                          | 18,430                                            | 352                              | 12                                                         |
| Gujarat        | 14,692                                           | 213                          | 9800                                              | 200                              | -6                                                         |
| Haryana        | 5540                                             | 61                           | 4620                                              | 88                               | 44                                                         |
| Jharkhand      | 4460                                             | 73                           | 3090                                              | 58                               | -20                                                        |
| Karnataka      | 9480                                             | 77                           | 7150                                              | 143                              | 85                                                         |
| Madhya Pradesh | 20,490                                           | 333                          | 17,260                                            | 338                              | 1                                                          |
| Maharashtra    | 23,115                                           | 297                          | 16,320                                            | 299                              | 0                                                          |
| Odisha         | 9450                                             | 120                          | 8570                                              | 163                              | 36                                                         |
| Punjab         | 5680                                             | 68                           | 3920                                              | 75                               | 12                                                         |
| Rajasthan      | 7580                                             | 110                          | 4340                                              | 84                               | -23                                                        |
| Tamil Nadu     | 9220                                             | 123                          | 6700                                              | 137                              | 11                                                         |
| Telangana      | 7422.5                                           | 139                          | 5600                                              | 100                              | -28                                                        |
| Uttar Pradesh  | 22,455                                           | 331                          | 16,360                                            | 287                              | -13                                                        |
| West Bengal    | 13,636                                           | 199                          | 7700                                              | 136                              | -31                                                        |
| Total          | 194,023.5                                        | 2722                         | 143,665                                           | 2723                             |                                                            |

#### Table A4 Daily average generation by states in the actual and reallocated scenario

Source: Authors' analysis based on CEA daily generation reports

#### Table A5 Private plants' share increase in the reassigned generation mix

| Ownership      | Actual scenario (MU) | Reassigned Scenario (MU) | Difference from actual (%) |
|----------------|----------------------|--------------------------|----------------------------|
| Central sector | 901                  | 868                      | -4                         |
| State sector   | 872                  | 673                      | -23                        |
| Private sector | 949                  | 1182                     | 25                         |

Source: Authors' analysis based on CEA daily generation reports

### Table A6 Share of future demand met by retained assets in comparison to all demandfrom coal-based generation

| Year    | Average<br>daily<br>demand<br>(MU) | Share of<br>coal (%) | Average<br>demand<br>from coal<br>(MU) | Demand<br>from coal on<br>peak days<br>(MU) | Supply<br>from<br>retained<br>fleet (MU) | Share of<br>average<br>demand<br>met (%) | Share of<br>demand on<br>peak day<br>met (%) |
|---------|------------------------------------|----------------------|----------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|
| FY 2022 | 4290                               | 68                   | 2917                                   | 3443                                        | 3157                                     | 108                                      | 92                                           |
| FY 2027 | 5608                               | 62                   | 3477                                   | 4103                                        | 2982                                     | 86                                       | 73                                           |
| FY 2030 | 6370                               | 58                   | 3695                                   | 4360                                        | 2875                                     | 78                                       | 66                                           |

Source: Authors' analysis based on optimal generation mix by 2029–30, National Electricity Plan 2018 and CEA daily generation reports

#### Table A7 Plants deemed as surplus in the reallocation scenario

#### Plants to be decommissioned:

32

| Unit ID                 | State          | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|-------------------------|----------------|----------------|-----|------------------|------------|
| BAKRESWAR TPS1          | West Bengal    | State sector   | 11  | 210              | 79         |
| BAKRESWAR TPS2          | West Bengal    | State sector   | 21  | 210              | 79         |
| BAKRESWAR TPS3          | West Bengal    | State sector   | 20  | 210              | 74         |
| BAKRESWAR TPS4          | West Bengal    | State sector   | 19  | 210              | 80         |
| BAKRESWAR TPS5          | West Bengal    | State sector   | 12  | 210              | 75         |
| BANDEL TPS1             | West Bengal    | State sector   | 55  | 60               | 36         |
| BANDEL TPS2             | West Bengal    | State sector   | 55  | 60               | 37         |
| BANDEL TPS5             | West Bengal    | State sector   | 38  | 210              | 48         |
| BARAUNI TPS7            | Bihar          | Central sector | 3   | 110              | 6          |
| BOKARO B TPS3           | Jharkhand      | Central sector | 27  | 210              | 22         |
| DR. N TATA RAO TPS1     | Andhra Pradesh | State sector   | 41  | 210              | 56         |
| DR. N TATA RAO TPS2     | Andhra Pradesh | State sector   | 40  | 210              | 63         |
| DR. N TATA RAO TPS3     | Andhra Pradesh | State sector   | 31  | 210              | 75         |
| DR. N TATA RAO TPS4     | Andhra Pradesh | State sector   | 30  | 210              | 78         |
| DR. N TATA RAO TPS5     | Andhra Pradesh | State sector   | 26  | 210              | 77         |
| DR. N TATA RAO TPS6     | Andhra Pradesh | State sector   | 25  | 210              | 76         |
| DURGAPUR TPS4           | West Bengal    | Central sector | 38  | 220              | 41         |
| HARDUAGANJ TPS7         | Uttar Pradesh  | State sector   | 42  | 105              | 21         |
| KORBA-II2               | Chhattisgarh   | State sector   | 53  | 50               | 1          |
| KORBA-II3               | Chhattisgarh   | State sector   | 52  | 50               | 31         |
| KORBA-II4               | Chhattisgarh   | State sector   | 52  | 50               | 26         |
| KORBA-III1              | Chhattisgarh   | State sector   | 44  | 120              | 64         |
| KORBA-III2              | Chhattisgarh   | State sector   | 39  | 120              | 62         |
| KORBA-WEST TPS1         | Chhattisgarh   | State sector   | 37  | 210              | 68         |
| KORBA-WEST TPS2         | Chhattisgarh   | State sector   | 36  | 210              | 73         |
| KORBA-WEST TPS3         | Chhattisgarh   | State sector   | 35  | 210              | 65         |
| KORBA-WEST TPS4         | Chhattisgarh   | State sector   | 34  | 210              | 75         |
| KOTA TPS1               | Rajasthan      | State sector   | 37  | 110              | 41         |
| KOTA TPS2               | Rajasthan      | State sector   | 37  | 110              | 57         |
| KOTA TPS3               | Rajasthan      | State sector   | 32  | 210              | 68         |
| KOTA TPS4               | Rajasthan      | State sector   | 31  | 210              | 69         |
| KOTA TPS5               | Rajasthan      | State sector   | 26  | 210              | 71         |
| KOTHAGUDEM NEW<br>TPS10 | Telangana      | State sector   | 22  | 250              | 86         |
| KOTHAGUDEM NEW TPS9     | Telangana      | State sector   | 23  | 250              | 86         |
| KOTHAGUDEM TPS1         | Telangana      | State sector   | 54  | 60               | 70         |
| KOTHAGUDEM TPS2         | Telangana      | State sector   | 53  | 60               | 73         |
| KOTHAGUDEM TPS4         | Telangana      | State sector   | 53  | 60               | 76         |
| KOTHAGUDEM TPS5         | Telangana      | State sector   | 46  | 120              | 67         |

| Unit ID             | State          | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|---------------------|----------------|----------------|-----|------------------|------------|
| KOTHAGUDEM TPS6     | Telangana      | State sector   | 45  | 120              | 51         |
| KOTHAGUDEM TPS7     | Telangana      | State sector   | 43  | 120              | 62         |
| KOTHAGUDEM TPS8     | Telangana      | State sector   | 42  | 120              | 50         |
| METTUR TPS1         | Tamil Nadu     | State sector   | 33  | 210              | 62         |
| METTUR TPS2         | Tamil Nadu     | State sector   | 32  | 210              | 71         |
| METTUR TPS3         | Tamil Nadu     | State sector   | 31  | 210              | 73         |
| METTUR TPS4         | Tamil Nadu     | State sector   | 30  | 210              | 74         |
| MUZAFFARPUR TPS1    | Bihar          | Central sector | 7   | 110              | 44         |
| MUZAFFARPUR TPS2    | Bihar          | Central sector | 6   | 110              | 33         |
| NORTH CHENNAI TPS1  | Tamil Nadu     | State sector   | 16  | 210              | 64         |
| NORTH CHENNAI TPS2  | Tamil Nadu     | State sector   | 16  | 210              | 72         |
| NORTH CHENNAI TPS3  | Tamil Nadu     | State sector   | 24  | 210              | 72         |
| OBRA TPS1           | Uttar Pradesh  | State sector   | 53  | 50               | 128        |
| PANIPAT TPS5        | Haryana        | State sector   | 31  | 210              | 5          |
| PARICHHA TPS2       | Uttar Pradesh  | State sector   | 35  | 110              | 22         |
| RAICHUR TPS1        | Karnataka      | State sector   | 35  | 210              | 44         |
| RAICHUR TPS2        | Karnataka      | State sector   | 34  | 210              | 46         |
| RAICHUR TPS3        | Karnataka      | State sector   | 29  | 210              | 58         |
| RAICHUR TPS4        | Karnataka      | State sector   | 26  | 210              | 78         |
| RAICHUR TPS5        | Karnataka      | State sector   | 21  | 210              | 72         |
| RAICHUR TPS6        | Karnataka      | State sector   | 21  | 210              | 61         |
| RAICHUR TPS7        | Karnataka      | State sector   | 17  | 210              | 48         |
| RAMAGUNDEM - B TPS1 | Telangana      | State sector   | 49  | 62.5             | 10         |
| ROPAR TPS3          | Punjab         | State sector   | 32  | 210              | 18         |
| ROPAR TPS4          | Punjab         | State sector   | 31  | 210              | 18         |
| ROPAR TPS5          | Punjab         | State sector   | 28  | 210              | 22         |
| ROPAR TPS6          | Punjab         | State sector   | 27  | 210              | 24         |
| SATPURA TPS6        | Madhya Pradesh | State sector   | 41  | 200              | 48         |
| SATPURA TPS7        | Madhya Pradesh | State sector   | 40  | 210              | 40         |
| SATPURA TPS8        | Madhya Pradesh | State sector   | 37  | 210              | 50         |
| SATPURA TPS9        | Madhya Pradesh | State sector   | 36  | 210              | 31         |
| TALCHER (OLD) TPS1  | Odisha         | Central sector | 49  | 60               | 92         |
| TALCHER (OLD) TPS2  | Odisha         | Central sector | 49  | 60               | 96         |
| TALCHER (OLD) TPS3  | Odisha         | Central sector | 48  | 60               | 91         |
| TALCHER (OLD) TPS4  | Odisha         | Central sector | 48  | 60               | 88         |
| TALCHER (OLD) TPS5  | Odisha         | Central sector | 47  | 110              | 80         |
| TALCHER (OLD) TPS6  | Odisha         | Central sector | 47  | 110              | 88         |
| TANDA STPS1         | Uttar Pradesh  | Central sector | 32  | 110              | 67         |
| TANDA STPS2         | Uttar Pradesh  | Central sector | 31  | 110              | 66         |
| TANDA STPS3         | Uttar Pradesh  | Central sector | 30  | 110              | 65         |
| TANDA STPS4         | Uttar Pradesh  | Central sector | 22  | 110              | 66         |

| Unit ID           | State         | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|-------------------|---------------|----------------|-----|------------------|------------|
| TENUGHAT TPS1     | Jharkhand     | State sector   | 24  | 210              | 52         |
| TENUGHAT TPS2     | Jharkhand     | State sector   | 23  | 210              | 62         |
| TUTICORIN TPS1    | Tamil Nadu    | State sector   | 41  | 210              | 48         |
| TUTICORIN TPS2    | Tamil Nadu    | State sector   | 39  | 210              | 64         |
| TUTICORIN TPS3    | Tamil Nadu    | State sector   | 38  | 210              | 64         |
| TUTICORIN TPS4    | Tamil Nadu    | State sector   | 28  | 210              | 64         |
| TUTICORIN TPS5    | Tamil Nadu    | State sector   | 29  | 210              | 62         |
| ANPARA TPS1       | Uttar Pradesh | State sector   | 34  | 210              | 81         |
| ANPARA TPS2       | Uttar Pradesh | State sector   | 33  | 210              | 77         |
| ANPARA TPS3       | Uttar Pradesh | State sector   | 32  | 210              | 83         |
| BHUSAWAL TPS3     | Maharashtra   | State sector   | 38  | 210              | 12         |
| CHANDRAPUR STPS3  | Maharashtra   | State sector   | 35  | 210              | 41         |
| CHANDRAPUR STPS4  | Maharashtra   | State sector   | 34  | 210              | 45         |
| DADRI (NCTPP)1    | Uttar Pradesh | Central sector | 28  | 210              | 48         |
| DADRI (NCTPP)2    | Uttar Pradesh | Central sector | 27  | 210              | 45         |
| DADRI (NCTPP)3    | Uttar Pradesh | Central sector | 27  | 210              | 52         |
| DADRI (NCTPP)4    | Uttar Pradesh | Central sector | 26  | 210              | 57         |
| FARAKKA STPS1     | West Bengal   | Central sector | 34  | 200              | 78         |
| FARAKKA STPS2     | West Bengal   | Central sector | 33  | 200              | 79         |
| FARAKKA STPS3     | West Bengal   | Central sector | 33  | 200              | 76         |
| GANDHI NAGAR TPS3 | Gujarat       | State sector   | 30  | 210              | 50         |
| GANDHI NAGAR TPS4 | Gujarat       | State sector   | 29  | 210              | 48         |
| IB VALLEY TPS1    | Odisha        | State sector   | 26  | 210              | 76         |
| IB VALLEY TPS2    | Odisha        | State sector   | 25  | 210              | 76         |
| KAHALGAON TPS1    | Bihar         | Central sector | 28  | 210              | 78         |
| KAHALGAON TPS2    | Bihar         | Central sector | 26  | 210              | 81         |
| KAHALGAON TPS3    | Bihar         | Central sector | 25  | 210              | 83         |
| KAHALGAON TPS4    | Bihar         | Central sector | 24  | 210              | 83         |
| KHAPARKHEDA TPS1  | Maharashtra   | State sector   | 31  | 210              | 39         |
| KHAPARKHEDA TPS2  | Maharashtra   | State sector   | 30  | 210              | 54         |
| KOLAGHAT TPS1     | West Bengal   | State sector   | 27  | 210              | 17         |
| KOLAGHAT TPS2     | West Bengal   | State sector   | 30  | 210              | 46         |
| KOLAGHAT TPS3     | West Bengal   | State sector   | 34  | 210              | 1          |
| KOLAGHAT TPS4     | West Bengal   | State sector   | 36  | 210              | 48         |
| KOLAGHAT TPS5     | West Bengal   | State sector   | 26  | 210              | 56         |
| KOLAGHAT TPS6     | West Bengal   | State sector   | 29  | 210              | 51         |
| KORADI TPS6       | Maharashtra   | State sector   | 38  | 210              | 16         |
| KORADI TPS7       | Maharashtra   | State sector   | 37  | 210              | 9          |
| KORBA STPS1       | Chhattisgarh  | Central sector | 37  | 200              | 88         |
| KORBA STPS2       | Chhattisgarh  | Central sector | 37  | 200              | 86         |
| KORBA STPS3       | Chhattisgarh  | Central sector | 36  | 200              | 92         |

| Unit ID                          | State          | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|----------------------------------|----------------|----------------|-----|------------------|------------|
| MEJIA TPS1                       | West Bengal    | Central sector | 24  | 210              | 60         |
| MEJIA TPS2                       | West Bengal    | Central sector | 23  | 210              | 51         |
| NASIK TPS3                       | Maharashtra    | State sector   | 41  | 210              | 43         |
| NASIK TPS4                       | Maharashtra    | State sector   | 40  | 210              | 56         |
| NASIK TPS5                       | Maharashtra    | State sector   | 39  | 210              | 36         |
| OBRA TPS10                       | Uttar Pradesh  | State sector   | 41  | 200              | 63         |
| OBRA TPS11                       | Uttar Pradesh  | State sector   | 42  | 200              | 72         |
| OBRA TPS12                       | Uttar Pradesh  | State sector   | 39  | 200              | 1          |
| OBRA TPS13                       | Uttar Pradesh  | State sector   | 38  | 200              | 8          |
| OBRA TPS9                        | Uttar Pradesh  | State sector   | 40  | 200              | 66         |
| RAMAGUNDEM STPS1                 | Telangana      | Central sector | 37  | 200              | 77         |
| RAMAGUNDEM STPS2                 | Telangana      | Central sector | 36  | 200              | 81         |
| RAMAGUNDEM STPS3                 | Telangana      | Central sector | 35  | 200              | 85         |
| RAYALSEEMA TPS1                  | Andhra Pradesh | State sector   | 26  | 210              | 63         |
| RAYALSEEMA TPS2                  | Andhra Pradesh | State sector   | 25  | 210              | 54         |
| SABARMATI (D-F<br>STATIONS) TPP1 | Gujarat        | Private sector | 42  | 120              | 81         |
| SABARMATI (D-F<br>STATIONS) TPP2 | Gujarat        | Private sector | 35  | 121              | 82         |
| SABARMATI (D-F<br>STATIONS) TPP3 | Gujarat        | Private sector | 32  | 121              | 82         |
| SANJAY GANDHI TPS1               | Madhya Pradesh | State sector   | 27  | 210              | 62         |
| SANJAY GANDHI TPS2               | Madhya Pradesh | State sector   | 27  | 210              | 56         |
| SINGRAULI STPS1                  | Uttar Pradesh  | Central sector | 38  | 200              | 82         |
| SINGRAULI STPS2                  | Uttar Pradesh  | Central sector | 38  | 200              | 86         |
| SINGRAULI STPS3                  | Uttar Pradesh  | Central sector | 37  | 200              | 82         |
| SINGRAULI STPS4                  | Uttar Pradesh  | Central sector | 37  | 200              | 86         |
| SINGRAULI STPS5                  | Uttar Pradesh  | Central sector | 36  | 200              | 79         |
| SOUTHERN REPL. TPS1              | West Bengal    | Private sector | 29  | 68               | 22         |
| SOUTHERN REPL. TPS2              | West Bengal    | Private sector | 30  | 68               | 30         |
| UKAI TPS3                        | Gujarat        | State sector   | 41  | 200              | 66         |
| UKAI TPS4                        | Gujarat        | State sector   | 41  | 200              | 73         |
| UKAI TPS5                        | Gujarat        | State sector   | 35  | 210              | 67         |
| UNCHAHAR STPS1                   | Uttar Pradesh  | Central sector | 32  | 210              | 66         |
| UNCHAHAR STPS2                   | Uttar Pradesh  | Central sector | 31  | 210              | 69         |
| VINDHYACHAL STPS1                | Madhya Pradesh | Central sector | 33  | 210              | 95         |
| VINDHYACHAL STPS2                | Madhya Pradesh | Central sector | 32  | 210              | 89         |
| VINDHYACHAL STPS3                | Madhya Pradesh | Central sector | 31  | 210              | 90         |
| VINDHYACHAL STPS4                | Madhya Pradesh | Central sector | 30  | 210              | 86         |
| VINDHYACHAL STPS5                | Madhya Pradesh | Central sector | 30  | 210              | 85         |
| VINDHYACHAL STPS6                | Madhya Pradesh | Central sector | 29  | 210              | 85         |
| WANAKBORI TPS1                   | Gujarat        | State sector   | 38  | 210              | 42         |

| Unit ID        | State   | Ownership    | Age | Capacity<br>(MW) | PLF<br>(%) |
|----------------|---------|--------------|-----|------------------|------------|
| WANAKBORI TPS2 | Gujarat | State sector | 37  | 210              | 44         |
| WANAKBORI TPS3 | Gujarat | State sector | 36  | 210              | 68         |
| WANAKBORI TPS4 | Gujarat | State sector | 34  | 210              | 60         |
| WANAKBORI TPS5 | Gujarat | State sector | 34  | 210              | 57         |
| WANAKBORI TPS6 | Gujarat | State sector | 33  | 210              | 58         |
| Total          |         |              |     | 29,775.5         |            |

Plants to be temporarily mothballed

| Unit ID            | State          | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|--------------------|----------------|----------------|-----|------------------|------------|
| AMARKANTAK TPS3    | Madhya Pradesh | State sector   | 12  | 210              | 91         |
| BARKHERA TPS1      | Uttar Pradesh  | Private sector | 9   | 45               | 17         |
| BARKHERA TPS2      | Uttar Pradesh  | Private sector | 8   | 45               | 14         |
| BELA TPS1          | Maharashtra    | Private sector | 7   | 270              | 3          |
| BHILAI TPS1        | Chhattisgarh   | Central sector | 12  | 250              | 74         |
| BHILAI TPS2        | Chhattisgarh   | Central sector | 11  | 250              | 76         |
| BUDGE BUDGE TPS1   | West Bengal    | Private sector | 23  | 250              | 90         |
| BUDGE BUDGE TPS2   | West Bengal    | Private sector | 21  | 250              | 84         |
| BUDGE BUDGE TPS3   | West Bengal    | Private sector | 11  | 250              | 93         |
| CHAKABURA TPP2     | Chhattisgarh   | Private sector | 6   | 30               | 90         |
| CHANDRAPURA(DVC)7  | Jharkhand      | Central sector | 11  | 250              | 83         |
| CHANDRAPURA(DVC)8  | Jharkhand      | Central sector | 10  | 250              | 80         |
| CHHABRA TPS1       | Rajasthan      | State sector   | 11  | 250              | 86         |
| CHHABRA TPS2       | Rajasthan      | State sector   | 10  | 250              | 80         |
| GH TPS (LEH.MOH.)3 | Punjab         | State sector   | 12  | 250              | 30         |
| DSPM TPS1          | Chhattisgarh   | State sector   | 13  | 250              | 88         |
| DSPM TPS2          | Chhattisgarh   | State sector   | 12  | 250              | 90         |
| GANDHI NAGAR TPS5  | Gujarat        | State sector   | 22  | 210              | 73         |
| GH TPS (LEH.MOH.)1 | Punjab         | State sector   | 22  | 210              | 22         |
| GH TPS (LEH.MOH.)2 | Punjab         | State sector   | 22  | 210              | 23         |
| GH TPS (LEH.MOH.)4 | Punjab         | State sector   | 12  | 250              | 22         |
| JOJOBERA TPS2      | Jharkhand      | Private sector | 19  | 120              | 72         |
| JOJOBERA TPS3      | Jharkhand      | Private sector | 18  | 120              | 72         |
| JSW RATNAGIRI TPP1 | Maharashtra    | Private sector | 10  | 300              | 84         |
| JSW RATNAGIRI TPP2 | Maharashtra    | Private sector | 9   | 300              | 65         |
| JSW RATNAGIRI TPP3 | Maharashtra    | Private sector | 9   | 300              | 74         |
| JSW RATNAGIRI TPP4 | Maharashtra    | Private sector | 9   | 300              | 75         |
| KASAIPALLI TPP1    | Chhattisgarh   | Private sector | 8   | 135              | 79         |
| KASAIPALLI TPP2    | Chhattisgarh   | Private sector | 8   | 135              | 72         |
| KHAMBARKHERA TPS1  | Uttar Pradesh  | Private sector | 9   | 45               | 13         |
| KHAMBARKHERA TPS2  | Uttar Pradesh  | Private sector | 9   | 45               | 14         |

| Unit ID            | State          | Ownership      | Age   | Capacity<br>(MW) | PLF<br>(%) |
|--------------------|----------------|----------------|-------|------------------|------------|
| KHAPARKHEDA TPS3   | Maharashtra    | State sector   | 20    | 210              | 54         |
| KHAPARKHEDA TPS4   | Maharashtra    | State sector   | 19    | 210              | 63         |
| KOTA TPS6          | Rajasthan      | State sector   | 17    | 195              | 83         |
| KOTA TPS7          | Rajasthan      | State sector   | 11    | 195              | 87         |
| KUNDARKI TPS1      | Uttar Pradesh  | Private sector | 8     | 45               | 21         |
| KUNDARKI TPS2      | Uttar Pradesh  | Private sector | 8     | 45               | 18         |
| MAQSOODPUR TPS1    | Uttar Pradesh  | Private sector | 9     | 45               | 15         |
| MAQSOODPUR TPS2    | Uttar Pradesh  | Private sector | 8     | 45               | 14         |
| MEJIA TPS3         | West Bengal    | Central sector | 22    | 210              | 56         |
| MEJIA TPS4         | West Bengal    | Central sector | 16    | 210              | 59         |
| MEJIA TPS5         | West Bengal    | Central sector | 13    | 250              | 64         |
| MEJIA TPS6         | West Bengal    | Central sector | 13    | 250              | 72         |
| MUNDRA TPS1        | Gujarat        | Private sector | 11    | 330              | 67         |
| MUNDRA TPS2        | Gujarat        | Private sector | 10    | 330              | 73         |
| MUNDRA TPS3        | Gujarat        | Private sector | 10    | 330              | 72         |
| MUNDRA TPS4        | Gujarat        | Private sector | 9     | 330              | 72         |
| MUZAFFARPUR TPS3   | Bihar          | Central sector | 5     | 195              | 60         |
| NIWARI TPP1        | Madhya Pradesh | Private sector | 6     | 45               | 35         |
| NIWARI TPP2        | Madhya Pradesh | Private sector | 0.843 | 45               | 1          |
| OP JINDAL TPS1     | Chhattisgarh   | Private sector | 13    | 250              | 21         |
| OP JINDAL TPS2     | Chhattisgarh   | Private sector | 12    | 250              | 12         |
| OP JINDAL TPS3     | Chhattisgarh   | Private sector | 12    | 250              | 50         |
| OP JINDAL TPS4     | Chhattisgarh   | Private sector | 12    | 250              | 46         |
| PANIPAT TPS6       | Haryana        | State sector   | 19    | 210              | 12         |
| PANIPAT TPS7       | Haryana        | State sector   | 16    | 250              | 54         |
| PANIPAT TPS8       | Haryana        | State sector   | 15    | 250              | 57         |
| PARAS TPS3         | Maharashtra    | State sector   | 13    | 250              | 53         |
| PARAS TPS4         | Maharashtra    | State sector   | 10    | 250              | 73         |
| PARICHHA TPS3      | Uttar Pradesh  | State sector   | 14    | 210              | 62         |
| PARICHHA TPS4      | Uttar Pradesh  | State sector   | 13    | 210              | 64         |
| PARLI TPS6         | Maharashtra    | State sector   | 13    | 250              | 41         |
| PARLI TPS7         | Maharashtra    | State sector   | 10    | 250              | 35         |
| RATIJA TPS1        | Chhattisgarh   | Private sector | 7     | 50               | 80         |
| RATIJA TPS2        | Chhattisgarh   | Private sector | 4     | 50               | 92         |
| RAYALSEEMA TPS3    | Andhra Pradesh | State sector   | 13    | 210              | 58         |
| RAYALSEEMA TPS4    | Andhra Pradesh | State sector   | 13    | 210              | 66         |
| RAYALSEEMA TPS5    | Andhra Pradesh | State sector   | 9     | 210              | 53         |
| SANJAY GANDHI TPS3 | Madhya Pradesh | State sector   | 21    | 210              | 52         |
| SANJAY GANDHI TPS4 | Madhya Pradesh | State sector   | 21    | 210              | 66         |
| SANTALDIH TPS5     | West Bengal    | State sector   | 11    | 250              | 75         |

38

| Unit ID                     | State          | Ownership      | Age | Capacity<br>(MW) | PLF<br>(%) |
|-----------------------------|----------------|----------------|-----|------------------|------------|
| SHIRPUR TPP1                | Maharashtra    | Private sector | 3   | 150              | 0          |
| SIKKA REP. TPS3             | Gujarat        | State sector   | 5   | 250              | 65         |
| SIKKA REP. TPS4             | Gujarat        | State sector   | 5   | 250              | 61         |
| SIMHAPURI TPS2              | Andhra Pradesh | Private sector | 8   | 150              | 1          |
| SIMHAPURI TPS3              | Andhra Pradesh | Private sector | 6   | 150              | 2          |
| SURATGARH TPS1              | Rajasthan      | State sector   | 22  | 250              | 59         |
| SURATGARH TPS2              | Rajasthan      | State sector   | 20  | 250              | 42         |
| SURATGARH TPS3              | Rajasthan      | State sector   | 19  | 250              | 45         |
| SURATGARH TPS4              | Rajasthan      | State sector   | 18  | 250              | 51         |
| SURATGARH TPS5              | Rajasthan      | State sector   | 17  | 250              | 47         |
| SURATGARH TPS6              | Rajasthan      | State sector   | 11  | 250              | 40         |
| SVPL TPP1                   | Chhattisgarh   | Private sector | 8   | 63               | 20         |
| THAMMINAPATNAM TPS1         | Andhra Pradesh | Private sector | 8   | 150              | 3          |
| THAMMINAPATNAM TPS2         | Andhra Pradesh | Private sector | 8   | 150              | 5          |
| TORANGALLU TPS(SBU-I)1      | Karnataka      | Private sector | 21  | 130              | 78         |
| TORANGALLU TPS(SBU-I)2      | Karnataka      | Private sector | 21  | 130              | 37         |
| TORANGALLU TPS(SBU-<br>II)3 | Karnataka      | Private sector | 11  | 300              | 60         |
| TORANGALLU TPS(SBU-<br>II)4 | Karnataka      | Private sector | 11  | 300              | 24         |
| TROMBAY TPS8                | Maharashtra    | Private sector | 11  | 250              | 79         |
| UNCHAHAR STPS3              | Uttar Pradesh  | Central sector | 21  | 210              | 68         |
| UNCHAHAR STPS4              | Uttar Pradesh  | Central sector | 21  | 210              | 71         |
| UNCHAHAR STPS5              | Uttar Pradesh  | Central sector | 14  | 210              | 69         |
| UTRAULA TPS1                | Uttar Pradesh  | Private sector | 8   | 45               | 19         |
| UTRAULA TPS2                | Uttar Pradesh  | Private sector | 8   | 45               | 18         |
| WANAKBORI TPS7              | Gujarat        | State sector   | 21  | 210              | 77         |
| WARDHA WARORA TPP2          | Maharashtra    | Private sector | 10  | 135              | 4          |
| WARDHA WARORA TPP3          | Maharashtra    | Private sector | 9   | 135              | 28         |
| WARDHA WARORA TPP4          | Maharashtra    | Private sector | 9   | 135              | 29         |
| Total                       |                |                |     | 19583            |            |

Table A8 Coal plants have contributed to much larger share at a regional level in the30-month period than the estimated generation in reassigned scenario

Over the 30-month period:

| Thermal generation | Eastern<br>region | North-Eastern<br>region | Norther<br>region | Southern<br>region | Western<br>region |
|--------------------|-------------------|-------------------------|-------------------|--------------------|-------------------|
| Maximum share (MU) | 22% (610)         | 1% (17)                 | 27% (686)         | 25% (684)          | 46% (1301)        |
| Minimum share (MU) | 13% (386)         | 0% (0)                  | 16% (418)         | 14% (342)          | 36% (1057)        |

#### Reassigned scenario:

| Thermal generation       | Easter<br>region | North-Eastern<br>region | Northern<br>region | Southern<br>region | Western region |
|--------------------------|------------------|-------------------------|--------------------|--------------------|----------------|
| Base share<br>(MU)       | 18% (487)        | 0.4% (11)               | 21% (570)          | 18% (495)          | 43% (1158)     |
| Reassigned<br>share (MU) | 16% (443)        | 0.3% (9)                | 20% (534)          | 20% (548)          | 44% (1188)     |

Source: Authors' analysis based on CEA daily generation reports

Table A9 Majority of the capacity deemed surplus are at the early stage of FGD installation

| FGD status                  | Capacity |  |
|-----------------------------|----------|--|
| Feasibility study started   | 1,410    |  |
| Feasibility study completed | 10,226   |  |
| Tender specifications made  | 3,020    |  |
| NIT issued                  | 6,982    |  |
| Bid opened                  | 4,270    |  |
| Bid awarded                 | 8,380    |  |
| Retendering                 | 920      |  |
| FGD commissioned            | 840      |  |

Source: Authors' analysis based on quarterly summary of FGD implementation status—February 2021

 Table A10 Around 3.5 GW ISGS capacity providing flexibility during peak demand hours

 are deemed surplus in the reassigned scenario

| Unit ID          | Capacity (MW) | Utilisation |
|------------------|---------------|-------------|
| BHILAI TPS1      | 250           | Baseload    |
| BHILAI TPS2      | 250           | Baseload    |
| DADRI (NCTPP)1   | 210           | Ramping     |
| DADRI (NCTPP)2   | 210           | Ramping     |
| DADRI (NCTPP)3   | 210           | Ramping     |
| DADRI (NCTPP)4   | 210           | Ramping     |
| FARAKKA STPS1    | 200           | Ramping     |
| FARAKKA STPS2    | 200           | Ramping     |
| FARAKKA STPS3    | 200           | Ramping     |
| KAHALGAON TPS1   | 210           | Ramping     |
| KAHALGAON TPS2   | 210           | Ramping     |
| KAHALGAON TPS3   | 210           | Ramping     |
| KAHALGAON TPS4   | 210           | Ramping     |
| KORBA STPS1      | 200           | Baseload    |
| KORBA STPS2      | 200           | Baseload    |
| KORBA STPS3      | 200           | Baseload    |
| MUZAFFARPUR TPS3 | 195           | Ramping     |
| RAMAGUNDEM STPS1 | 200           | Baseload    |
| RAMAGUNDEM STPS2 | 200           | Baseload    |
| RAMAGUNDEM STPS3 | 200           | Baseload    |
| SINGRAULI STPS1  | 200           | Baseload    |

| Unit ID           | Capacity (MW) | Utilisation |
|-------------------|---------------|-------------|
| SINGRAULI STPS2   | 200           | Baseload    |
| SINGRAULI STPS3   | 200           | Baseload    |
| SINGRAULI STPS4   | 200           | Baseload    |
| SINGRAULI STPS5   | 200           | Baseload    |
| UNCHAHAR STPS1    | 210           | Ramping     |
| UNCHAHAR STPS2    | 210           | Ramping     |
| UNCHAHAR STPS3    | 210           | Ramping     |
| UNCHAHAR STPS4    | 210           | Ramping     |
| UNCHAHAR STPS5    | 210           | Ramping     |
| VINDHYACHAL STPS1 | 210           | Baseload    |
| VINDHYACHAL STPS2 | 210           | Baseload    |
| VINDHYACHAL STPS3 | 210           | Baseload    |
| VINDHYACHAL STPS4 | 210           | Baseload    |
| VINDHYACHAL STPS5 | 210           | Baseload    |
| VINDHYACHAL STPS6 | 210           | Baseload    |

Source: Authors' analysis



#### Figure A1

Older plants are likely to spend more energy per unit operation

Source: Authors' analysis based on supplied coal grades, monthly generation data and monthly coal statement report from SEVA and CEA respectively

Figure A2

There is a significant distribution in coal quality, though the median is consistent across vintages

Source: Authors' analysis based on SEVA

The remaining coal generation capacity after decommissioning 30 GW, could cater to 108% and 77% of the average supply expected from coal in 2022 and 2030 respectively.

a stand a contraction

10.2

-

2 - - -

Sec. 20

-

2

÷.,

12-22-24-24

1.25

#### COUNCIL ON ENERGY, ENVIRONMENT AND WATER (CEEW)

Sanskrit Bhawan, A-10, Aruna Asaf Ali Marg **Qutab Institutional Area** New Delhi 110 067, India T: +91 11 4073 3300

info@ceew.in | ceew.in | 🎔 @CEEWIndia | 🞯 ceewIndia



KOLAGHAT

UKAI TANDA UKAI DADRI OBRA

BANDEL WANAKBER ANPARA BRUSAWAL BANDEL PANIPAT KOTA TANDA

ANPARA DADRI Mettur Koradi Raichur Panipat Tanda

D

DADRI DADRI A CHANDRAPUR

DADRI TANDA

GANDHI NAGAR