

Annexure

How Can India Indigenise Hydrogen Electrolyser Manufacturing?

Quantifying the Potential for Indigenising Electrolysers using a Bottom-up Cost Assessment

Rishabh Patidar, Deepak Yadav, and Hemant Mallya

We reviewed literature and compiled data from various sources, including previous studies, patents, technical reports, data sheets, websites, and e-marketplaces, to comprehensively understand the cost parameters influencing the stack and system cost. This allowed us to develop assumptions for different manufacturing process studies in our analysis. The key parameters used to establish the bottom-up study are summarised here.

Annexure 1: Parameters and assumptions for PEM electrolysers

Table A1 lists the major components, sub-components, and the respective material(s) used in the study to assess the bottom-up cost of PEM electrolysers.

Table A1 Components and materials for PEM electrolysers

Main component	Sub-component	Material(s)	
	Anode	Iridium	
	Cathode	Platinum on carbon black	
Electrolyser stack	Separator	Perfluorosulphonic acid (PFSA) membranes (i.e., Nafion)	
	PTL (anode)	Gold-coated sintered porous titanium	
	PTL (cathode)	Sintered porous titanium or carbon cloth	
	BPP (anode)	Gold-coated stainless steel	
	BPP (cathode)	Gold-coated stainless steel	
	Frames and sealing	Polytetrafluoroethylene (PTFE); PTFE with 40% reinforced glass fibre	

Source: Authors' compilation from Mayyas, Ahmad, Mark Ruth, Keith Wipke, Bryan Pivovar, and Guido Bender. 2019. "Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers". Golden, Colorado: US National Renewable Energy Laboratory (NREL).

Table A2 lists the raw materials used in PEM manufacturing and their respective costs. The table also details the key material costs of the cell and stack assembly.

Table A2 Material cost assumption for PEM electrolysers

Sr. No.	Material	Cost	Unit	Reference
1	Platinum	32.28	USD/g	(Metalary 2018)
2	Iridium	31.19	USD/g	(Metalary 2018)
3	Titanium powder	35	USD/kg	(NREL 2019)
4	Gold	43.54	USD/g	(Metalary 2018)
5	lonomer	1.53	USD/g	(NREL 2019)
6	Carbon black	1	USD/kg	(Indiamart 2022)
7	Carbon cloth	350.00	USD/m²	(NREL 2019)
8	Solvent in CCM	10	USD/gallon	(NREL 2019)
9	Ethanol	1.20	USD/kg	(Indiamart 2022)
10	Binder	1.50	USD/kg	(Indiamart 2022)
11	PPS-40%GF resin	15.40	USD/kg	(NREL 2019)
12	Stainless steel 316L	0.00372	USD/g	(Sachiya Steel 2022)

Source: Authors' compilation

Annexure 2: Parameters and assumptions for alkaline electrolysers

The assumptions we considered for alkaline electrolysers included a detailed analysis of components and sub-components essential for the process as shown in Table A3.

Table A3 Components and materials for alkaline electrolysers

Main component	Sub-component	Material	
	Anode	Nickel-coated perforated stainless steel	
	Cathode	Nickel-coated perforated stainless steel	
Electrolyser stack	Electrolyte	30–40% potassium hydroxide (KOH)	
	Separator	ZrO ₂ stabilised with PPS mesh (Zirfon) Nickel foam	
	PTL (anode)		
	PTL (cathode)	Nickel foam	
	BPP (anode)	Nickel-coated stainless steel	
	BPP (cathode)	Nickel-coated stainless steel	

Frames and sealing PTFE, PFSA 40% reinforced glass fibre

Source: Authors' compilation from Mayyas, Ahmad, Mark Ruth, and Margaret Mann. 2017. "Manufacturing Competitiveness Analysis for PEM and Alkaline Water Electrolysis Systems." Presented at the 2017 Fuel Cell Seminar and Energy Exposition, November 6–9, 2017. Long Beach, California.

The material costs for an alkaline electrolyser are primarily determined by the cost associated with key materials such as nickel for electrodes, zirconium for membranes, and metals used for cell frames as shown in Table A4.

Table A4 Material costs assumed for alkaline electrolysers

Sr. No.	Material	Value	Unit	Reference
1	Nickel	23.92	USD/kg	(Nornickel 2019)
2	Average raney nickel	0.044	USD/kg	(Indiamart 2022, Indiamart 2022)
3	Steel	3.72	USD/kg	(Steel Tubes India 2022)
4	PPS-40GF resin	8.85	USD/kg	(Alibaba 2022)
5	PTFE gasket	10	USD/kg	(Made in China 2022)
6	Zirfon	60	USD/m²	(Kazemi 2014) and quotation from Agfa, 2022
7	Expanded/woven nickel mesh	64.15	USD/m ²	(Made in China 2022, Alibaba 2022)
8	Nickel foam	21.70	USD/m²	(Made in China 2022)
9	Molybdenum powder	50.87	USD/kg	(Ministry of Commerce n.d.)

Source: Authors' compilation

Annexure 3: Parameters and assumptions for SOEs

The cells in SOEs are arranged in a stack configuration to maximise efficiency and output. Each cell is sandwiched between interconnects that facilitate electrical conductivity and gas flow. The stack configuration typically includes repeating units of anode—electrolyte—cathode assemblies known as SRU. Figure A1 shows a typical cell and stack arrangement for an SOE.

Figure A1 Arrangement of the cell and stack for SOEs

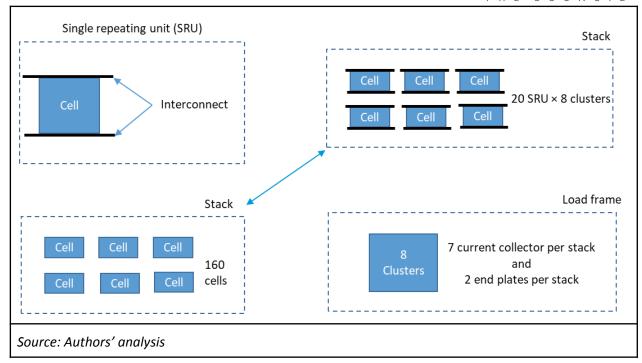


Table A5 lists key components and materials for SOEs, including materials used for anodes, cathodes, electrolytes, and interconnects.

Table A5 Components and material for SOE

Main component	Sub-component	Material
Electrolyser stack	Cathode	Nickel oxide + ceria gadolinium oxide (CGO)
	Electrolyte	Scandia-stabilised zirconia (SSZ)
	Anode	lanthanum strontium cobalt ferrite (LSCF)
	Current collector	Stainless steel with manganese cobalt oxide (MCO) coating
	Sealing gasket	Lanthanum oxide (LO) and borosilicate glass (BSG)
	Interconnect	Ferritic steel with MCO coating (Crofer 22 APU)

Source: Authors' compilation from Anghilante, Régis, David Colomar, Annabelle Brisse, and Mathieu Marrony. 2018. "Bottom-Up Cost Evaluation of SOEC Systems in the Range of 10–100 MW." International Journal of Hydrogen Energy, 43 (45): 20309–22.

Table A6 lists the key parameters that we used for the bottom-up cost assessment of SOEs, including cell size, stack configuration, specifications, operating conditions, and efficiency metrics.

Table A6 Parameters assumed for the bottom-up cost assessment of SOEs

іаріе Аб	Table A6 Parameters assumed for the bottom-up cost assessment of SOEs						
Sr. No.	Parameter	Value	Unit				
1	Cell length	15.83	cm				
2	Cell width	10.55	cm				
3	Overall scrap rate for cell-making	10–15%					
	Anode (LSCF)						
4	Thickness	0.0025	cm				
5	Density of LSCF	6.21	g/cm³				
6	Mass of anode	2.59	g				
	Electrolyte (SSZ)						
7	Thickness	0.013	cm				
8	Density of SSZ	g/cm³					
9	Mass of electrolyte 11.40		g				
	GDL coating (CGO)						
10	Thickness	0.0020	cm				
11	Density of CGO	7.26	g/cm³				
12	Mass of coating		g				
	Cathode (NiO/CGO)						
13	Thickness	0.0025	cm				
14	Density of NiO/CGO	7.01	g/cm³				
15	Mass of cathode	2.92	g				
	Organic solvents						
16	Quantity required (scenario 1)	24.5	g				
17	Quantity required (scenario 2) 23.9 g		g				
	General info: Interconnect (Crofer 22 APU)						
18	Margin for interconnect	1	cm				
19	Interconnect plate length 17.83 cm						

		I H	E C O U N C I L
20	Interconnect plate width	12.55	cm
21	Interconnect plate thickness	0.025	cm
22	Crofer 22 APU / SS441 density (proprietary material)	7.70	g/cm³
23	Mass of interconnect plate	43.07	g
	General info: Interconnect coating	material (MCO)	
24	MCO coating thickness	3.00E-04	cm
25	MCO density	1.41	g/cm³
26	Volume of MCO coating	0.135	cm³
27	Mass of MCO coating	0.19	g
	General info: Sealing (Ceradyne VIOX V164	49) made of LO ar	nd BSG
28	Sealing material thickness on a 1 cm margin	148	microns
29	Sealing material width	0.80	cm
30	Seal area	0.0118	cm²
31	Total sealing length	323.36	cm
32	Volume of seal material per cell	3.83	cm³
33	Density of seal material	4.37	g/cm³
34	Mass of seal material per cell	16.73	g
	General info: Current collector (SS904	L/SS441 with MC	0)
35	Current collector plate thickness	0.025	cm
36	Margin for current collector plate	1.00	cm
37	Current collector plate length	19.83	cm
38	Current collector plate width	14.55	cm
39	Current collector plate volume	7.21	cm³
40	Mass of collector plate	58	g
	General info: Current collector coati	ng material (MCO)
41	MCO coating thickness	3.00E-04	cm
42	MCO density 1.41 g/cm		

43	Volume of MCO coating	0.194	cm3			
44	Mass of MCO coating	0.27	g			
	General info: End plate (A560 stainless steel)					
45	Margin for end plate	1.00	cm			
46	End plate length	19.83	cm			
47	End plate width	14.55	cm			
48	End plate thickness	1.50	cm			
49	Volume of an end plate	432.77	cm³			
50	Density of end plate material	7.80	g/cm³			
51	Mass of end plate	3376	g			

Source: Authors' compilation from Anghilante, Régis, David Colomar, Annabelle Brisse, and Mathieu Marrony. 2018. "Bottom-up Cost Evaluation of SOEC Systems in the Range of 10–100 MW." International Journal of Hydrogen Energy, 43 (45): 20309–22.

Table A7 outlines the material costs associated with an SOE electrolyser consisting of rare earth materials, high-temperature ceramics, interconnect, and other key materials used in cell construction.

Table A7 Material cost assumption

Sr. No.	Material cost	Value	Unit	Reference
1	LSCF (anode)	53	EUR/kg	(Anghilante, et al. 2018)
2	SSZ (electrolyte)	256	EUR/kg	(Anghilante, et al. 2018)
3	CGO (coating)	42	EUR/kg	(Anghilante, et al. 2018)
4	NiO/CGO (cathode)	23	EUR/kg	(Anghilante, et al. 2018)
5	Organic solvents	10.6	EUR/kg	(Anghilante, et al. 2018)
6	Sheet metal (Crofer 22 APU)	25	USD/kg	(Scataglini, et al. 2015)
7	Coating powder (MCO)	300	USD/kg	(Scataglini, et al. 2015)
8	Sealing (LO and BSG)	24.25	USD/kg	(Battelle 2016)
9	Current collector (LSCF)	5.31	USD/kg	(Battelle 2016)
10	End plate (A560 cast steel)	7.95	USD/kg	(Battelle 2016)
11	Benzyl n-butyl phthalate (Alfa Aesar)	2.67	USD/kg	(Indiamart 2022)

		_		
12	n-butyl alcohol, 99.9% (Fisher Scientific)	1.33	USD/kg	(PNNL 2013)
13	Polyvinyl butyral, Butvar® B-79	19.75	USD/kg	(PNNL 2013)
14	Phospholan™ PS-236 surfactant	6.47	USD/kg	(PNNL 2013)
15	Glass powder	36.53	USD/kg	(PNNL 2013)
16	Argon	2.4	USD/kg	(Indiamart 2022)
17	Nitrogen	0.69	USD/kg	(Indiamart 2022)
18	Hydrogen	1.95	USD/kg	(Alibaba 2022)
19	CuO	11.3	USD/kg	(Indiamart 2022)
20	Carbon pore former	38	USD/kg	(Alibaba 2022)
21	2-butoxyethanol	1.01	USD/kg	(Indiamart 2022)
22	Inconel® 600	26.7	USD/kg	(Steel Tubes India 2022)
23	Al₂O₃ substrate	42.38	USD/kg	(PNNL 2013)
24	Cr-steel support plate	0.67	USD/kg	(PNNL 2013)
25	Assembling cost (scenario 1)	25.84	EUR/kW	(Anghilante, et al. 2018)
26	Assembling cost (scenario 2)	4	EUR/kW	(Anghilante, et al. 2018)

Source: Authors' compilation

References

Alibaba. 2022. Carbon-Fiber-CE-Certified-Carbon-Fiber. Accessed July 18, 2024.

 $https://www.alibaba.com/product-detail/Carbon-Fiber-CE-Certified-Carbon-Fiber_60692217196. \\ html?spm=a2700.7724857.0.0.205028c5ec3gbc\&s=p.$

Alibaba. 2022. Hydrogen gas. Accessed July 18, 2024.

 $https://www.alibaba.com/product-detail/99-999-Hydrogen-Gas-Price-hidrogen_60692364831.html?spm=a2700.7724857.0.0.515753a3P58hqe.$

Alibaba. 2022. Nickel mesh. Accessed July 18, 2024.

https://www.alibaba.com/product-detail/201-200-30-Mesh-X-0_62033909084.html?s=p.

Alibaba. 2022. Polypropylene sulfide pps resin price PPS GF40. Accessed July 18, 2024.

https://www.alibaba.com/product-detail/polypropylene-sulfide-pps-resin-price-PPS_6068970835 9.html.

Anghilante, Régis, David Colomar, Annabelle Brisse, and Mathieu Marrony. 2018. "Bottom-Up Cost Evaluation Of SOEC Systems In The Range Of 10–100 MW." *International Journal of Hydrogen Energy.*

Battelle. 2016. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications. US Department of Energy.

Daudt, N, F J Hackemüller, and M Bram. 2020. "Porous Transport Layers Made of Niobium/Steel Composites for Water Electrolysis." Portugal: JuSER.

Dioxide material. n.d. Sustainion® Membranes. Accessed July 2024, 2024.

https://dioxidematerials.com/products/sustainion/.

Indiamart. 2022. Alfa Aesar. Accessed July 18, 2024.

https://www.indiamart.com/proddetail/butyl-benzyl-phthalate-3866865873.html.

-. 2022. Argon gas. Accessed July 18, 2024.

https://www.indiamart.com/proddetail/argon-gas-20373076630.html.

Indiamart. 2022. Carbon Black. Accessed July 18, 2024.

https://www.indiamart.com/proddetail/carbon-black-13899378691.html.

- —. 2022. Copper Oxide. Accessed July 18, 2024. https://dir.indiamart.com/impcat/copper-oxide.html.
- -. 2022. Ethanol. Accessed July 18, 2024.

https://www.indiamart.com/proddetail/ethanol-chemical-22363496262.html.

—. 2022. Nitrogen gas. Accessed July 18, 2024.

https://dir.indiamart.com/search.mp?ss=nitrogen+&prdsrc=1&mcatid=49997&catid=60&stype=a ttr=1|attrS&res=RC4.

-. 2022. "Polyvinyl-butyral-resin." Accessed July 18, 2024.

https://www.indiamart.com/proddetail/ethanol-chemical-22363496262.html.

Indiamart. 2022. Raney Nickel / Sponge Nickel Catalyst. Accessed July 18, 2024.

https://dir.indiamart.com/impcat/raney-nickel-catalyst.html.

Indiamart. 2022. "Raney Nickel Catalyst Liquid." Accessed July 18, 2024.

https://www.indiamart.com/proddetail/raney-nickel-catalyst-liquid-20565470862.html?pos=2&p la=n.

Made in China. 2022. Battery Electrode Material Foam Nickel with High Porosity Porous. Accessed July 18, 2024

https://huonar.en.made-in-china.com/product/AKeQoqEGqJts/China-Battery-Electrode-Material-Foam-Nickel-with-High-Porosity-Porous.html.

Made in China. 2022. *Hydrogen Production Ultra Thin 20 40 60 Mesh Pure Nickel Screen Mesh for Electrolyzer.* Accessed July 18, 2024.

https://hightopmetalmesh.en.made-in-china.com/product/wnXUgvsVltWd/China-Hydrogen-Production-Ultra-Thin-20-40-60-Mesh-Pure-Nickel-Screen-Mesh-for-Electrolyzer.html.

Made in China. 2022. PTFE Gasket Price. Accessed July 18, 2024.

https://www.made-in-china.com/products-search/hot-china-products/Ptfe_Gasket_Price.html. Metalary. 2018. *Platinum Price*. Accessed July 18, 2024.

- —. 2018. Gold prices. Accessed July 18, 24. https://www.metalary.com/gold-price/.
- -. 2018. Iridium Price. Accessed July 17, 2024. https://www.metalary.com/iridium-price/.

Nornickel. 2019. Annual report 2019. Accessed July 18, 2024.

https://ar2019.nornickel.com/commodity-market-overview/nickel.

Orion. n.d. *Technical Data*. Accessed July 18, 2024. https://orionpolymer.com/technical-data/.

Steel Tubes India. 2022. 316 stainless steel price per kg in India. Accessed July 18, 2024.

https://www.stindia.com/316-stainless-steel-supplier.html.

Steel Tubes India. 2022. *Nickel Alloy 600 Products supplier in India*. Accessed July 18, 2024. https://www.steeltubesindia.net/inconel-600.html#:~:text=The%20Inconel%20600%20price%20per,makeup%2C%20or%20any%20other%20customization.

Tokuyama. n.d. *Alkaline water electrolyzer.* Accessed July 17, 2024. https://www.tokuyama.co.jp/eng/research/recent_study/awe.html.

PNNL. 2013. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems. US Department of Energy.