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About CEEW

The Council on Energy, Environment and Water (CEEW) is one of Asia’s leading not-for-profit policy research 
institutions. The Council uses data, integrated analysis, and strategic outreach to explain — and change — 
the use, reuse, and misuse of resources. The Council addresses pressing global challenges through an integrated 
and internationally focused approach. It prides itself on the independence of its high-quality research, develops 
partnerships with public and private institutions, and engages with the wider public. 

The Council’s illustrious Board comprises Mr Jamshyd Godrej (Chairperson), Mr Tarun Das, Dr Anil Kakodkar, 
Mr S. Ramadorai, Mr Montek Singh Ahluwalia, Dr Naushad Forbes, Ambassador Nengcha Lhouvum Mukhopadhaya, 
and Dr Janmejaya Sinha. The 120-plus executive team is led by Dr Arunabha Ghosh. CEEW is certified as a 
Great Place To Work®. 

In 2021, CEEW once again featured extensively across ten categories in the 2020 Global Go To Think Tank Index Report, 
including being ranked as South Asia’s top think tank (15th globally) in our category for the eighth year in a row. 
CEEW has also been ranked as South Asia’s top energy and resource policy think tank for the third year running. 
It has consistently featured among the world’s best managed and independent think tanks, and twice among the 
world’s 20 best climate think tanks.
 
In ten years of operations, The Council has engaged in 278 research projects, published 212 peer-reviewed books, 
policy reports and papers, created 100+ new databases or improved access to data, advised governments around 
the world nearly 700 times, promoted bilateral and multilateral initiatives on 80+ occasions, and organised 350+ 
seminars and conferences. In July 2019, Minister Dharmendra Pradhan and Dr Fatih Birol (IEA) launched the CEEW 
Centre for Energy Finance. In August 2020, Powering Livelihoods — a CEEW and Villgro initiative for rural start-ups — 
was launched by Minister Mr Piyush Goyal, Dr Rajiv Kumar (NITI Aayog), and H.E. Ms Damilola Ogunbiyi (SEforAll). 
 
The Council’s major contributions include: The 584-page National Water Resources Framework Study for India’s 
12th Five Year Plan; the first independent evaluation of the National Solar Mission; India’s first report on global 
governance, submitted to the National Security Adviser; irrigation reform for Bihar; the birth of the Clean Energy 
Access Network; work for the PMO on accelerated targets for renewables, power sector reforms, environmental 
clearances, Swachh Bharat; pathbreaking work for the Paris Agreement, the HFC deal, the aviation emissions 
agreement, and international climate technology cooperation; the concept and strategy for the International Solar 
Alliance (ISA); the Common Risk Mitigation Mechanism (CRMM); critical minerals for Make in India; modelling 
uncertainties across 200+ scenarios for India’s low-carbon pathways; India’s largest multidimensional energy access 
survey (ACCESS); climate geoengineering governance; circular economy of water and waste; and the flagship event, 
Energy Horizons. It recently published Jobs, Growth and Sustainability: A New Social Contract for India’s Recovery.

The Council’s current initiatives include: A go-to-market programme for decentralised renewable energy-
powered livelihood appliances; examining country-wide residential energy consumption patterns; raising consumer 
engagement on power issues; piloting business models for solar rooftop adoption; developing a renewable energy 
project performance dashboard; green hydrogen for industry decarbonisation; state-level modelling for energy and 
climate policy; reallocating water for faster economic growth; creating a democratic demand for clean air; raising 
consumer awareness on sustainable cooling; and supporting India’s electric vehicle and battery ambitions. It also 
analyses the energy transition in emerging economies, including Indonesia, South Africa, Sri Lanka and Vietnam.

The Council has a footprint in 22 Indian states, working extensively with state governments and grassroots 
NGOs. It is supporting power sector reforms in Uttar Pradesh and Tamil Nadu, scaling up solar-powered irrigation in 
Chhattisgarh, supporting climate action plans in Gujarat and Madhya Pradesh, evaluating community-based natural 
farming in Andhra Pradesh, examining crop residue burning in Punjab, promoting and deploying solar rooftops in 
Delhi, Bihar and Meghalaya.
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In 2021, Himachal Pradesh alone witnessed 
30 cloud burst incidences, of which 12 in the 
pre-monsoon season and 18 during southwest 
monsoon months (SANDRP 2021).
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The International Labour Organisation (ILO) 
projects that inaction in the face of slow-onset 
events like heat waves will cost India 34 million 
jobs by 2030.



Our worst fears have been confirmed. Human-induced climate change is already 
causing severe weather events across the world, impacting the lives and livelihoods of 

millions. The first tranche of the Intergovernmental Panel on Climate Change’s (IPCC) Sixth 
Assessment Report is a grim reminder of the make-or-break choices that we need to make in a 
1.5°C-breaching climate. 

The IPCC report reiterates the dire consequences of this human-induced breach for the Indian 
subcontinent: increased dry spells, intensification of extreme rainfall by more than 20 per 
cent, and an exponential surge in heatwaves and cyclonic events. 

As global warming reaches a tipping point, India’s growth is linked intricately with climate 
risks. Such risks have a disproportionate impact on vulnerable communities with low 
adaptive capacities and pose a critical threat to India’s sustainable development. Investments 
in infrastructure such as housing, transport, and industries will be threatened, especially 
along the coasts. Further, with mounting weather-related insurance losses, climate change 
could trigger the next financial crisis. 

This study undertakes a first-of-its-kind district-level vulnerability assessment of India, which 
maps exposure, sensitivity, and adaptive capacity using spatio-temporal analysis. To do 
this, we developed a climate vulnerability index (CVI) of Indian states and union territories 
(UTs). A CVI will help Map critical vulnerabilities; Plan strategies to enhance resilience, and 
Adapt by climate-proofing communities, economies and infrastructure. Instead of looking 
at climate extremes in isolation, we map the combined risk of hydro-met disasters and their 
compounded impacts on vulnerability. By doing so, we aim to inform policy goals in the 
resource-constrained context of India.

Why does India need a climate vulnerability index?
India is the seventh-most vulnerable country with respect to climate extremes (Germanwatch 
2020). Climate action needs to be scaled up both at the sub-national and district levels to 
mitigate the impact of extreme events. An analysis by the Council on Energy, Environment 
and Water (CEEW) suggests that three out of four districts in India are extreme event hotspots, 
with 40 per cent of the districts exhibiting a swapping trend, i.e., traditionally flood-prone 
areas are witnessing more frequent and intense droughts and vice-versa (Mohanty 2020). 
Further, the IPCC states with high confidence that every degree rise in temperature will lead 
to a three per cent increase in precipitation, causing increased intensification of cyclones and 
floods. 

Executive summary

i

A Climate Vulnerability 
Index (CVI) will 
help map critical 
vulnerabilities; plan 
strategies to enhance 
resilience, and adapt 
by climate-proofing 
communities, economies 
and infrastructure
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Developing a climate vulnerability index (CVI) for India
This study is a first-of-its-kind micro-level vulnerability assessment that maps the climate 
vulnerability of districts in India. To assess vulnerability, we designed a composite CVI for 
Indian states and UTs that considers exposure, sensitivity, and adaptive capacity. The study 
evaluates exposure at the micro-level, assessing sensitivity through spatio-temporal analysis 
and analysing adaptive capacity by evaluating socio-economic and governance mechanisms. 
The framework we developed is based on IPCC’s SREX framework, which was also used by 
DST to map vulnerability to climate change. 

As the CVI integrates spatial, temporal, and location-specific indicators, it enables the 
mapping of critical communities, sectors, and assets. It is unique in that it computes the 
vulnerability score of each district by taking into consideration all three components of the 
vulnerability function: exposure, sensitivity, and adaptive capacity. Further, it explores the 
differential importance of each vulnerability indicator in determining the total vulnerability 

This is especially concerning since global, regional, national, and subnational climate actions 
are geared towards limiting the rise in Earth’s temperature to 2°C above pre-industrial levels. 
However, storms are already intensifying into cyclones, droughts are affecting more than half 
of the country, and floods of unprecedented scale are causing catastrophic loss and damage 
(Mohanty 2020). These trends are the result of a mere 0.6–0.7°C rise in temperature in the last 
100 years (IMD 2019). Thus, there is a pressing need to consider the consequences of a 2°C 
target.

Various studies by the Food and Agriculture Organization of the United Nations (FAO), the 
United Nations Office for Disaster Risk Reduction (UNDRR), the United Nations Development 
Programme (UNDP), and the Department of Science & Technology (DST) have highlighted 
the importance of robust micro-level vulnerability assessments. Given the absence of such 
an assessment in India, this study undertakes an integrated mapping of exposure (the 
nature and degree to which a system is exposed), sensitivity (the degree to which a system 
is affected), and adaptive capacity (the ability of a system to adjust to climate change) using 
spatio-temporal analysis. Equation ES1 enumerates the vulnerability function.

Managing climate risks requires an enhanced understanding of the underlying drivers 
of hazards; the exposure of regions and populations; the sensitivity of regions and their 
resulting vulnerability; and the interactions between these components, as highlighted by 
the IPCC. While exposure to extreme events is linear, the impacts are non-linear, depending 
on the sensitivity and adaptive capacity of the affected systems. For some, it may entail 
adjustments and re-adjustments in livelihood options, but, for others, the impacts can be 
catastrophic, compounding beyond existing vulnerability thresholds. Thus, identifying the 
compounding impacts of risk and mapping the vulnerability of geographies and communities 
is a national imperative.

Equation ES1 Vulnerability function

India is estimated to 
have suffered losses of 
almost USD 80 billion 
due to extreme climate 
events in the last two 
decades

V E S AC

Vulnerability (f)
Exposure (E) x Sensitivity (S)

Adaptive Capacity (AC)
=
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score using composite vulnerability indexing exclusively for hydro-met disasters. Table ES1 
enumerates the state-wise vulnerability indexing of Indian states.

The spatial index–based assessment will help mainstream climate actions through a robust 
decision-making (RDM)1 approach (Lambert, Sharma, & Ryckman 2019). Further, such a 
composite assessment can help determine policy goals and reprioritise climate adaptation 
actions in a resource-constrained country like India. 

The assessment maps the frequency and intensity of exposure of Indian districts to hydro-met 
extremes and associated events. Further, these data are integrated with a spatial mapping 
of the sensitivity of landscape indicators (land-use-land-cover, soil moisture, groundwater, 
slope, and elevation) to climate extremes. We also assess adaptive capacity by considering a 
wide set of socio-economic indicators such as population density, GDDP, literacy ratio, sex 
ratio, availability and accessibility of critical infrastructures, availability and accessibility 
of shelters, and robustness of district disaster management plans (DDMPs). Extreme event 
indicators were shortlisted through stakeholder consultations to capture the on-ground 
consensus regarding the drivers of vulnerability at a micro-scale.  

In line with the IPCC’s SREX framework and the DST common vulnerability assessment 
approach (DST 2020; IPCC 2014), we propose that climate extremes should not be seen as 
primary events; instead, the combined risk of associated events should be mapped. Thus, we 
capture the combined risk of hydro-met disasters and their compounded impact on districts’ 
climate vulnerability.
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Mapping India’s vulnerability: key findings 
As per our analysis, 27 of 35 states and UTs are highly vulnerable to extreme hydro-met 
disasters2 and their compounded impacts (Figure ES2). Our analysis suggests that India’s 
western and central zones are more vulnerable to drought-like conditions and their 
compounding impacts. The northern and north-eastern zones are more vulnerable to extreme 
flood events and their compounding impacts. Meanwhile, India’s eastern and southern zones 
are highly vulnerable to extreme cyclonic events and their impacts. The eastern and southern 
zones are also becoming extremely prone to cyclones, floods, and droughts combined. 

5 out of 20 Indians are highly 
vulnerable to all three extreme events

We find that the pattern of extreme events is changing across regions and that more than 
40 per cent of Indian districts exhibit a swapping trend. Tackling these complex, varying 
patterns requires concerted risk mitigation strategies at the sub-national level. Our analysis 
suggests that the CVIs of Assam, Andhra Pradesh, Maharashtra, Karnataka, and Bihar are in 
the high range, making them the five most vulnerable states in India (Table ES1). However, 
there are marginal differences in the vulnerability of these states, so it is imperative to step up 
climate action in all of them. The CVI also helps map the vulnerability of populations residing 
in Indian districts. We find that more than 80 percent of India’s population lives in districts 
highly vulnerable to extreme hydro-met disasters (Figure ES1).

Figure ES1 
17 out of 20 people in 
India are vulnerable 
to extreme hydro-
met disasters 

Source: Authors’ analysis 

2. Hydrological and meteorological (or “hydro-met”) hazards – weather, water, and climate extremes (GFDRR 2018). 

iviv

Source for icons: Weepeople
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We find that the southern and western regions are the most vulnerable to extreme droughts 
and are affected year on year. These regions are predominantly affected by agricultural 
droughts. Since the 2000s, the northern, eastern, and central zones have been moderately 
vulnerable and are predominantly affected by meteorological and agricultural droughts. The 
north-eastern region is least vulnerable to extreme drought events. 

Our composite indexing suggests that more than 59 per cent of districts located in the eastern 
zone are highly vulnerable to extreme cyclone events. In the western zone, more than 41 per 
cent of districts are cyclone hotspots. Our analysis shows that the western coast has become 
increasingly vulnerable to cyclones in the last decade (2010–2019). India’s northern and 
north-eastern zones face very few extreme cyclone events and are therefore less vulnerable. 
The central zone is the only zone in India with no hotspots for extreme cyclone events. 

Increased drought-like conditions across India trigger the cyclogenesis process by which 
depressions turn into deep depressions, and deep depressions into cyclonic storms across 
the rapidly warming Indian Ocean. Since these cyclones are accompanied by floods, several 
districts across the eastern and western coasts are vulnerable to all three extremes. This 
makes mitigation and adaptation in these regions a daunting task. Table ES2 enumerates 
zone-wise vulnerability to extreme hydro-met disasters.

Only 63% of districts 
have a DDMP, out of 
which only 32% were 
updated until 2019
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Figure ES2 27 of 35 Indian states and UTs are highly vulnerable to extreme hydro-met disasters
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Table ES2 
Southern-zone is the 
most vulnerable to all 
three extreme hydro-
met disasters 

Source: Authors’ analysis
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A surge in extreme events has been observed across India after 2005. Our sensitivity 
analysis shows that this is primarily triggered by landscape disruptions. Various studies 
have confirmed the impact of landscape changes on the incidence of extreme events (UNEP 
2009). Other factors, such as the urban heat island effect, land subsidence, and microclimate 
changes, are also triggering the intensification of extreme events in India. Table ES3 shows 
how individual regions are affected by each component of vulnerability.

Table ES3 North-eastern and eastern zones of India are highly exposed to extreme flood events 

Building India’s climate resilience 
In an increasingly volatile climate landscape, hyper-local strategies can minimise impacts 
and avert or reduce loss and damage. The CVI intends to evaluate the vulnerability of Indian 
districts in a comparable unified matrix and identify the major landscape and socio-economic 
drivers of vulnerability. This will enable communities to map, plan and adapt against the 
climate extremes.

Extreme 
event

Flood Drought Cyclone

3. Adaptive capacity is calculated for combined hydro-met disasters.
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With less than a decade left to step up climate actions, our policies need a razor-sharp focus 
to curtail the compounded impacts of climate extremes. Principles of risk assessment should 
be at the core of India’s climate risk mitigation strategy. Identifying risk is the first and 
foremost step to building climate-proofed economies and societies that embrace climate-
resilient pathways. Based on our analysis, we make the following recommendations: 

1. Develop a high-resolution Climate Risk Atlas (CRA) to map critical vulnerabilities at 
the district level and better identify, assess, and project chronic and acute risks such 
as extreme climate events, heat and water stress, crop loss, vector-borne diseases and 
biodiversity collapse. A CRA can also support coastal monitoring and forecasting, which 
are indispensable given the rapid intensification of cyclones  and other extreme events. 

2. Establish a centralised climate-risk commission to coordinate the environmental de-
risking mission (Ghosh 2021). 

3. Undertake climate-sensitivity-led landscape restoration focused on rehabilitating, 
restoring, and reintegrating natural ecosystems as part of the developmental process. 

4. Integrate climate risk profiling with infrastructure planning to increase adaptive 
capacity. 

5. Provide for climate risk-interlinked adaptation financing by creating innovative 
CVI-based financing instruments that integrate climate risks for an effective risk transfer 
mechanism. 

India urgently needs national and sub-national strategies to climate-proof its population and 
economic growth. If a 1.5°C warmer future climate is inevitable, we must brace for its impacts 
and ensure that we have the means to build back better and faster when disaster strikes. If we 
fail, we could set our development story back by decades.
 

India is leading global 
efforts on disaster risk 
reduction (DRR). It is a 
signatory to the SFDRR 
and is also a permanent 
chair of the CDRI

viiExecutive summary
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ActionAid estimates that impact of climate 
change will force more than 45 million 
people in India to migrate by 2050.



1

In brief 
In 2020, the Department of Science and Technology (DST), Government of India, published a study ranking Indian 

states according to their vulnerability to climate risks. The study highlighted the need for a national-level climate 

vulnerability assessment with a particular focus on hydro-met disasters. To address this gap, this study attempts 

a first-of-its-kind micro-level vulnerability assessment based on composite indexing. We use a composite index–

based methodology to first map the exposure of Indian districts to extreme events and their associated events 

and then map the sensitivity of landscape indicators through spatial indexing, which identifies the drivers of 

extreme events. Extreme event stressors were shortlisted through a wide set of stakeholder consultations to 

capture the on-ground consensus. The following definitions and terminologies are considered as per the IPCC’s 

AR (6) categorisation:

1. Exposure is “the presence of people, livelihoods, species or ecosystems, environmental functions, services, 

resources, infrastructure, or economic, social, or cultural assets in places and settings that could be adversely 

affected” (IPCC 2014). 

2. Sensitivity is “the degree to which a system is affected, either adversely or beneficially, by climate-related 

stimuli. The effect may be direct (e.g., a change in crop yield in response to a change in the mean, range, or 

variability of temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal flooding 

due to sea-level rise)” (IPCC 2001).

3. Adaptive capacity is “the ability of a system to adjust to climate change (including climate variability 

and extremes), to moderate potential damages, to take advantage of opportunities, or to cope with the 

consequences” (IPCC 2001).

The IPCC acknowledges these three components as key elements of vulnerability. Thus, a comprehensive 

vulnerability assessment should consolidate the available temporal and spatial information about a particular 

region (district), data confidence levels, knowledge gaps, and allied information. Further, it should combine the 

specific elements of exposure, sensitivity, and adaptive capacity to enable more risk-informed decision-making.

1. Understanding the vulnerability landscape 
of India in a changing climate scenario

Climate action needs to be scaled up at both the sub-national and district levels in India to 
mitigate the impact of extreme events on the lives and livelihoods of millions. Further, the 

threat of increased glacial melting looms large across the Hindu-Kush Himalayan region and 
will have serious repercussions on communities, economies and infrastructure. The extent 
of loss and damage from extreme climate events has risen exponentially in recent decades; 
it is imperative to perform a comprehensive vulnerability assessment of Indian districts to 
understand their exposure, sensitivity, and vulnerability to hydro-met disasters. Managing 
climate risks requires an understanding of the drivers of hazards; exposure, sensitivity, and 
vulnerability; and the interactions between these components, as highlighted by the IPCC. 
This can be done by explicitly or implicitly analysing the components of risks across different 
geographies.



Mapping India’s Climate Vulnerability: A District Level Assessment2

1.1 Identifying the climate risk landscape through a 
vulnerability assessment 

Climate change is poised to breach established thresholds on an unprecedented scale. It is 
a lived reality for many, given the accelerating frequency and intensity with which extreme 
events ravage lives and livelihoods. It has also altered the spatial extent, interval, and pattern 
of weather and climate events (Zhai et al. 2018). 

India is a tropical country with frequent cyclonic disturbances and monsoon-related extremes 
(IMD 2015). More than 300 extreme events have hit the country in recent decades, causing 
losses of more than INR 5,600 billion (5.6 lakh crore; Mohanty 2020). Though exposure to 
extreme events is linear, the impacts are non-linear and depend on a region’s sensitivity 
and adaptive capacity. For some, it may entail adjustments and re-adjustments of livelihood 
options, but for others, the impacts can be catastrophic, compounding beyond existing 
vulnerability thresholds. 

In the coming decades, climate change is likely to make rainfall erratic, cause sea level rise, 
and accelerate the frequency and intensity of droughts, floods, and heatwaves (IPCC 2018). 
CEEW estimates that over 75 per cent of Indian districts, including 95 per cent of coastal 
districts, are extreme event hotspots (Figure 1). Given the circumstances, a comprehensive 
vulnerability assessment of Indian districts is needed to identify the combined risks of hydro-
met disasters and their compounding impacts. The Global Risk Perception Survey (GRPS) 
identifies climate-related issues as one of the major concerns that can disrupt economic 
growth (WEF 2020). As the climate risk landscape evolves, our micro-level vulnerability 
assessment will provide critical information on geographical susceptibility to hydro-met 
disasters in diverse spatial and environmental settings. 

The composite index–based vulnerability assessment method is quite robust, and different 
organisations have recommended it (OECD 2008; DST 2020; IPCC 2014). However, the IPCC’s 
Third Assessment Report has acknowledged the evolution of vulnerability assessments for 
identifying and mapping climate impacts. The scope of such assessments has broadened 
considerably given the non-linearity, complexity, and compounding impacts of climate 
extremes. Additionally, the recalibration of the vulnerability function was acknowledged in 
the Fifth Assessment Report (IPCC 2014). Box 1.1 illustrates the chronology of the vulnerability 
assessment frameworks. Integrated vulnerability frameworks have often been criticised 
for using the outcome as an indicator for the analysis (Brien et al. 2007). Thus, to maintain 
consistency in the approach, we followed the IPCC’s SREX framework (Figure 2) and adhered 
to the Department of Science and Technology’s (DST; Government of India) common 
vulnerability assessment approach while developing the vulnerability indexing of Indian 
districts to hydro-met disasters (DST 2020; IPCC 2014).

The frequency and 
intensity of extreme 
events in India have 
increased by almost 
200% since 2005
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Figure 1 
More than 95 per 
cent of coastal Indian 
districts are extreme 
event hotspots 

Source: Mohanty 2020

Figure 2 Illustration of the IPCC SREX framework for components risk and vulnerability

Source: IPCC 2014
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‘Vulnerability’ is the extent to which 
climate change may damage or harm a 
system; it is a function of both sensitivity 
to climate and the ability to adapt to new 
conditions. 

(IPCC: Special Assessment Report 1998)

• Vulnerability is the degree to which a 
system is susceptible to, and unable 
to cope with, the adverse effects of 
climate change, including climate 
variability and extremes. 

• Vulnerability is a function of the 
character, magnitude, and rate of 
climate change and variation to 
which a system is exposed, the 
sensitivity and adaptive capacity of 
that system. 

(IPCC: Fourth Assessment Report 2007)

• Vulnerability is the degree to which a 
system is susceptible to, or unable to cope 
with, adverse effects of climate change, 
including climate variability and extremes. 

• Vulnerability is a function of the character, 
magnitude, and rate of climate change and 
the variation to which a system is exposed, 
its sensitivity, and its adaptive capacity. 

(IPCC: Third Assessment Report 2001)

Vulnerability: The propensity or predisposition 
to be adversely affected.

(Special report of the IPCC 2012)

• Vulnerability: The propensity or 
predisposition to be adversely 
affected.

• Vulnerability encompasses a variety 
of concepts and elements including 
sensitivity or susceptibility to harm 
and lack of capacity to cope and 
adapt.

(IPCC: Fifth Assessment Report 2014)

BOX 1.1 Evolving definitions of vulnerability

The Pan American Health Organization coined the term ‘vulnerability’ in the early 1980s (WHO). The 

Intergovernmental Panel on Climate Change (IPCC) first introduced the term in a Special Assessment Report (SAR) 

titled The Regional Impacts of Climate Change: An Assessment of Vulnerability, March 1998. The special report 

on vulnerability assessment provided critical information on the potential impacts of climate change for various 

sources, including ecological systems, coastal infrastructure, water supply, food production, and human health. The 

report acknowledged the extent to which natural ecosystems globally are vulnerable to climate change and form a 

key concern for governments worldwide. 

The Third Assessment Report (TAR) by the IPCC, published in 2001, built upon the SAR. For the first time it 

described vulnerability as a function of exposure, sensitivity, and adaptive capacity. The report also stated that the 

vulnerability of a system varies spatially and temporally (IPCC 2001).

The Fifth Assessment Report (AR5) released by the IPCC in 2014 illustrated the core concepts related to risk 

assessment. According to the report, risk results from the interaction of climate-related hazards with the 

vulnerability and exposure of human and natural systems (IPCC 2014).

1998

2004

2014

2001

2012
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Types of vulnerability 
assessments

Physical or biophysical 
vulnerability assessment

Hazard

Exposure

Sensitivity

“Generic” determinants or 
factors of social vulnerability

Institutional vulnerabilities

Intensity

Scale

Biophysical

Socio-economic/ 
institutional

Frequency

Social or inherent 
vulnerability assessment

Socio-economic 
vulnerability assessment

Hazard-specific 
vulnerability assessment

Integrated vulnerability 
assessment

BOX 1.2 Types of vulnerability assessment frameworks

1.  Physical or biophysical vulnerability assessment: “Biophysical vulnerability is concerned with the ultimate 

impacts of a hazard event, and is often viewed in terms of the amount of damage experienced by a system as a 

result of an encounter with a hazard” ( Jones and Boer 2003).

2.  Social vulnerability assessment: “Social vulnerability refers to the characteristics of a person or group in terms 

of their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard” (Wisner et al. 

2004).

3.  Socio-economic vulnerability assessment: “Socio-economic vulnerability is the endogenous inability of the unit 

to face shocks. This endogenous inability is a function of risk exposure and other socio-economic factors” (FAO 

2003).

4.  Hazard-specific vulnerability: “A hazard vulnerability assessment (HVA) is a systematic approach to identify all 

possible hazards that may affect a specific population, assess the risk associated with each hazard (e.g., the 

probability of hazard occurrence and the consequences for the population), and study the findings to develop a 

prioritized comparison of hazard vulnerabilities” (Du et al. 2015).

5.  Integrated vulnerability assessment: Integrated vulnerability assessment is based on biophysical, socio-

economic, institutional, and infrastructure-related vulnerability indicators (DST 2020). 
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1.2 Integrated vulnerability assessment
As illustrated in Box 1.2, integrated vulnerability assessment (IVA) combines biophysical and 
socio-economic/institutional vulnerabilities. We performed an IVA to identify geographical 
vulnerabilities to hydro-met disasters at the district level. For more on the scope of the method, 
the selection of the vulnerability assessment framework, and the spatial extent of the indicators, 
please see Chapter 2. 

As confirmed by the IPCC, IVA is one of the most widely accepted frameworks for conducting 
hazard-specific vulnerability assessments since it robustly captures anthropocentric stressors 
(Sharma 2019). Beyond the IPCC, different regions across the globe have used IVA to map, 
capture, and detail micro-level vulnerability as part of their national adaptation policies (IISD 
2019). Pacific nations have acknowledged IVA as a key methodology for standardising hazard-
specific vulnerability assessments based on the IPCC’s revamped vulnerability framework. Figure 
3 enumerates the salient components of the IVA framework.

The main advantage of IVA is that it addresses two key needs for risk-informed adaptation 
planning: i) establishing a common point of reference through a baseline analysis that 
incorporates hazard-specific information and ii) creating a base for monitoring and evaluating 
adaptation outcomes. Further, it institutionalises an inclusive approach to resilient development 
by placing climate-related interventions in an evolving risk landscape concurrent with national, 
sub-national, and developmental priorities. It integrates both disaster risk reduction (DRR) and 
climate-change-linked vulnerability assessments (Gero 2011).

Figure 3 Salient components of Integrated vulnerability assessment framework

Source: GIZ & SPC (2016)
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The IPCC’s Fifth Assessment Report defines vulnerability as the “propensity or predisposition 
to be adversely affected, which includes ‘sensitivity or susceptibility to harm and lack 
of capacity to cope and adapt” (IPCC 2007). The United Nations International Strategy 
for Disaster Risk Reduction (UNISDR) specifies vulnerability as “characteristics and 
circumstances of a community, system, or asset that make it susceptible to the damaging 
effects of a hazard” (UNISDR 2011). Annexure-I (Table A2) illustrates the conceptual 
framework of vulnerability as defined by the IPCC and UNISDR. 

The IVA framework provides broad information and inferences that can enhance countries’ 
adaptive capacity and enable them to build back better against climate shocks. They also 
integrate climate adaptation practices with disaster risk reduction (DRR) strategies, which 
can have multi-faceted benefits including the mitigation of climate-related losses and the 
enhancement of resource-use efficiency (Shamsuddoha et al. 2013a). Further, resilience 
pathways identified through IVA frameworks can be integrated with developmental planning, 
policy monitoring, and evaluation. 

1.3 Research questions 

Sectoral and national-level assessments have been attempted in India to develop a robust 
vulnerability index at various spatial scales and extents. However, to our knowledge, there 
have been no micro-level vulnerability assessments with respect to hydro-met disasters. 
The previous sections provide an overview of the conceptual framework of the vulnerability 
assessment and why developing a robust vulnerability assessment framework is of utmost 
importance for tackling climate change. 

In this study, we use an integrated vulnerability assessment framework to derive, at a 
micro-level, a vulnerability indexing of Indian districts with respect to their exposure to 
hydro-met disasters and associated events. India does not have a hydro-met-disaster-focused 
vulnerability assessment to enhance climate actions at a sub-national level. This study 
attempts to bridge this gap by answering the following research questions.  

How vulnerable are Indian districts to the non-linear patterns and 
frequency of climate extremes?

Robust micro-level vulnerability assessments are intrinsic to risk-informed decisions. 
India ranks seventh globally in terms of vulnerability to extreme events, making a robust 
vulnerability assessment of its districts the need of the hour. The DST has highlighted the 
importance of developing a common framework for vulnerability for building long-term 
resilience. Based on the common vulnerability framework proposed by the DST (2020), 
IPCC (2014), O’Brien (2007), and Kelly and Adger (2000), we used an endpoint/outcome 
approach by drawing upon a pentad decadal multi-hazard assessment inclusive of associated 
extreme events. While various states have developed vulnerability profiles, there has been 
no unified common approach, making the comparison of vulnerable districts in terms of 
varying patterns and frequency of climate extremes impossible. For example, two vulnerable 
districts exposed to cyclones might have different sensitivities and adaptive capacities to 
avert the extent of loss and damage. A unified common approach can help governments step 
up climate actions at the sub-national level by strengthening state action plans on climate 
change (SAPCCs) and localised district plans. Comparable unified indexing can also aid the 
mapping of the climate extremes landscape and hence support risk-informed decisions to 
climate-proof vulnerable regions.  

The IPCC acknowledges 
that data on disasters 
and DRR is lacking at
the local level, 
constraining the 
enhancement of 
community resilience
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How has the change in the pattern of extreme events increased 
India’s vulnerability, and how is their landscape changing?

Climate change is altering the pattern of extreme events and, as a result, changing the 
vulnerability landscape of India. For example, traditionally flood-prone areas are becoming 
drought-prone and vice versa, with some districts witnessing multiple extreme events in the 
same season or across different seasons. This multiplies the current state of vulnerability 
and further compounds impacts (Mohanty 2020). These varying patterns eventually increase 
exposure. Additionally, minimal or low adaptive capacity further increases the vulnerability 
of these districts.

How have changing landscape indicators contributed to the 
intensification of climate events across sub-regions?

Human action impacts landscape attributes (land use and land cover, soil moisture, 
groundwater, slope, and elevation, among others) by disrupting physical processes. This 
alters the frequency and intensity of extreme events. An analysis by CEEW found that 
the Indian subcontinent has witnessed more than 478 extreme events since 1970 and has 
experienced a spurt in their frequency after 2005 (Mohanty 2020). Various studies have 
confirmed that landscape attribute changes have substantially contributed to this spurt. 
Using a granular landscape sensitivity analysis, this study generates empirical evidence 
that shows how landscape attribute changes are linked to hydro-met disasters and how 
they contribute to intensification. This spatio-temporal sensitivity analysis can help 
improve localised landscape interventions to enhance regional resilience capacity. For 
example, various studies have suggested that natural ecosystems such as mangroves and 
wetlands act as shock absorbers against climate extremes. However, there is inadequate 
empirical evidence of the extent of loss of these ecosystems and how this has contributed to 
intensification trends. This study attempts to generate such information at a micro-scale with 
reference to hydro-met disasters.  
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2. Mapping India’s vulnerability: methodology

Image: Alamy

This chapter outlines the need to carry out an integrated vulnerability assessment (IVA) 
using a composite indexing approach. Our literature review suggests that IVA is the 

most widely accepted approach for vulnerability indexing. The IVA framework considers 
the vulnerability of a system/geography holistically – i.e., it accounts for both biophysical 
and socio-economic/institutional vulnerabilities. It captures sector-specific exposure and 
sensitivity components, ensuring a comprehensive impact assessment. Exposure and 
sensitivity are mapped vis-à-vis adaptive capacity to derive a district-level vulnerability index. 
Further, this approach delivers, in a unified manner, critical information on why certain 
regions are more vulnerable than others at a micro-scale.

9
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2.1 Introduction: a spatial index–based vulnerability  
       assessment framework for managing climate extremes 

Vulnerability assessment is a useful adaptation planning tool for mitigating climate risks 
(IPCC 2014). To mitigate the loss of lives and livelihoods, India should devise a climate 
risk strategy based on a robust vulnerability assessment. While India has conducted such 
assessments for specific sectors and geographies, there is still no unified framework for a 
micro-level assessment, making comparisons difficult. To address this gap, we assess the 
vulnerability of Indian districts to hydro-met disasters using a unified approach defined by 
the IPCC and by drawing lessons from the common approach proposed by the DST.  

According to the Fourth Assessment Report of the IPCC, vulnerability is defined as “the 
propensity or predisposition to be adversely affected. It encompasses a variety of concepts 
and elements, including sensitivity or susceptibility to harm and lack of capacity to cope and 
adapt ” (IPCC 2021). The IPCC defines exposure as “the nature and degree to which a system is 
exposed to significant climatic variations” (IPCC 2001). Vulnerability and exposure are often 
mistaken to mean the same thing; however, exposure is an independent component and is 
not dependent upon vulnerability. Still, it is a vital determinant of the overall vulnerability 
function, as to be vulnerable to an extreme event, it is necessary to also be exposed 
(Municipal Emergency Management Plan (MEMP) 2013). Thus, creating a composite exposure 
index is crucial to conducting a robust, integrated vulnerability assessment. 

Our research is the first of its kind to combine exposure, sensitivity, and adaptive capacity 
indicators to create district-level vulnerability scores using spatial, temporal, and socio-
economic indicators. Further, it explores the differential importance of each vulnerability 
indicator in determining the total vulnerability score. 

A spatial index–based vulnerability assessment will help mainstream climate actions by 
enabling a robust decision-making (RDM) approach (Lambert, Sharma, and Ryckman 2019). 
The RDM approach uses spatial and temporal tools to contextualise accepted concepts, 
processes, and tools to yield empirical, evidence-based decisions.  

BOX 2.1 Learnings from the literature

Spatial vulnerability assessments are limited to the national level and are sector-specific. Several assessments 

disregard differences in the spatial distribution of indicators at the district level as well as the influence of specific 

indicators on overall vulnerability. Others are in effect sensitivity analyses, as they do not consider the collective 

impacts of exposure, sensitivity, and adaptive capacity on vulnerability. These oversights result in incomplete/

non-precise vulnerability analyses. Various existing vulnerability studies are designed for, and rely on, national and 

state-level data, making their outcomes too general for a micro-level assessment (Frazier, Thompson, and Dezzani 

2014). Hence, a unified approach centred around composite indexing is imperative for developing a granular 

understanding of the state of vulnerability. 

Evaluating district-level vulnerability is crucial for developing a comprehensive hazard-specific climate risk 

mitigation strategy. Methodologies for conducting national and sub-national vulnerability assessments have 

evolved over time. In recent years, the analytical hierarchy process (AHP), the geographical information system 

(GIS), and additional qualitative indicators have been used in assessments. Further, several studies rely on 

stakeholder groups to classify hazards and impacts, but they are limited to sector-, region-, and state-specific 

assessments. Many recent studies integrate all these approaches; they use GIS and qualitative/quantitative metrics 

and high-level stakeholder participation to perform a robust empirical assessment. 

A spatial index–
based vulnerability 
assessment will help 
mainstream climate 
actions by enabling a 
robust decision-making 
approach

1010



Most dominant indices only capture certain social and physical factors of vulnerability, mostly at the national level 

( Jones and Andrey 2007; Wood, Burton, and Cutter 2010). In India, census or household survey data are the primary 

sources for spatially mapping social vulnerability in states. The literature confirms that including spatially explicit 

indicators in vulnerability assessments helps stakeholders and policymakers identify drivers of vulnerability in 

specific districts with reference to a specific hazard (Frazier, Thompson, and Dezzani 2014).

Figure 4 Hazard-specific vulnerability assessment

Source: UNISDR 2011
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Vulnerability indices are critical in hazard mitigation planning as they provide concrete 
scores (Jones and Andrey 2007; Tate 2012; Wood, Burton, and Cutter 2010). Composite index–
based vulnerability assessments deliver critical information on why certain regions are more 
vulnerable than others despite similar landscape attributes and climate zones. This is crucial 
as climate extremes have the potential to disrupt the thresholds of the Earth system (Lenton 
et al. 2008), and spatial-index based vulnerability assessments can be an effective tool to 
minimise the extent of loss and damage. 

The combination of exposure and sensitivity define the potential impact (PI) that may occur 
given a projected change in a climate without considering adaptation (Locatelli et al. 2008). 
However, projected potential impacts are beyond the scope of this study.

2.2 Development of a composite index–based approach  
       for vulnerability assessment 

Our vulnerability assessment uses a multidimensional composite indexing approach. For 
uniformity, we adhered to the IPCC’s contextual vulnerability assessment framework. The 
independent indicators used to calculate exposure, sensitivity, and adaptive capacity were 
selected based on evidence gathered from the literature review and were further validated 
through stakeholder consultations. For example, frequency and intensity were the sub-
indices used to calculate exposure indexing. A similar categorisation of independent 
indicators has been used by various studies (Chakraborty and Joshi 2016). 

A robust vulnerability assessment is a multi-step and multi-approach exercise and requires 
the explicit selection of spatial and socio-economic indicators. Additionally, the scale and 
type of assessment are very crucial. Figure 5 illustrates the stepwise methodological approach 
followed for the study.

Article 8 of the Paris 
Agreement states that 
“Parties recognize 
the importance of 
averting, minimizing 
and addressing loss 
and damage associated 
with the adverse effects 
of climate change, 
including extreme 
weather events and 
slow onset events” 
(Paris Agreement 2015)
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Mapping India’s Climate Vulnerability: A District Level Assessment

Figure 5 Detailed schematic representation of the approach and methodology (IVA)

Source: Authors’ analysis

2.2.1 Selection of spatial and socio-economic indicators 

Various studies, including the IPCC’s Fifth Assessment Report, stress that the selection of 
indicators is an important aspect of vulnerability assessment. Further, the robustness of 
response and mitigation strategies is directly proportional to the selection of indicators that 
enable decision makers to map, plan, and adapt to critical vulnerabilities (Rao et al. 2016). An 
indicator-based approach is also ideal for capturing the residual impacts4 of climate change, 
such as the number of work hours or school days lost to extreme climate events.

Vulnerability = f (Exposure x Sensitivity)/Adaptive Capacity

Finalisation vulnerability assessment 

Spatial index–based vulnerability assessment framework

Selection of indicators and data extraction

Normalisation of scores using the percentile and linear 
scale approaches

(Values lie between 0 and 1)

Prioritisation of sensitivity indicators 
using AHP

Extraction of mean value using zonal 
statistics

Composite vulnerability indexing

District-wise and state-wise ranking based 
on composite indexing

Spatial mapping on GIS desktop environment

Sensitivity indexing
Adaptive capacity 

indexing
Exposure indexing 

Pentad decadal 
analysis

DDMP evaluation and 
scoring for all seven 

indicators 

4. According to the IPCC, vulnerability tends to capture the residual impacts of climate change.
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Figure 6 Snapshot of CEEW consultation workshops

Source: CEEW

5. The Delphi technique provides a flexible and adaptable tool to gather and analyse the required data to those 
involved or interested in engaging in research, evaluation, fact-finding, issue exploration, or discovering what is 
actually known or not known about a specific topic.

13Mapping India’s vulnerability: methodological approach 

The stakeholder consultation was conducted with the aim of shortlisting sensitivity 
and adaptive capacity indicators through the Delphi technique5. This technique enables 
participatory engagement to finalise a list of indicators (Adams 2001). In our study, each 
of the indicators chosen has a functional relationship with the component as well as the 
overall vulnerability of a district. Both biophysical and social indicators were taken into 
consideration. The exposure indicators we considered are the frequency and intensity of 
extremes; the sensitivity indicators consider landscape attributes; and the adaptive capacity 
indicators include the socio-economic and evaluation of DDMPs. Table 1 enumerates the 
details of the selected indicators.

In our study, the top-down approach involved a granular spatio-temporal vulnerability 
analysis, and the bottom-up approach involved a wider stakeholder consultation with 
experts, practitioners, and representatives from civil society organisations (CSOs). We 
selected a comprehensive list of indicators, which we further shortlisted through stakeholder 
consultations based on the availability of data sources (Figure 8). It must be emphasised that 
selecting indicators was one of the most crucial steps in the study, as the outcome depends 
to a large extent on the indicators selected for spatio-temporal analysis. The indicators 
shortlisted for the assessment are illustrated in Table 3. 
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Table 1 Component-based shortlisted indicators for the vulnerability assessment

Source: Authors’ compilation

Exposure

Sensitivity

Adaptive capacity

Frequency and intensity of extreme events 
and their associated events

1. Land use and land cover

2. Elevation

3. Slope

4. Ground water

5. Soil moisture

1. District disaster management plans

2. Gross district domestic product

3. Literacy rate

4. Sex ratio

5. Availability and accessibility to critical 
infrastructure

6. Availability of disaster-ready shelters

7. Population density

Extreme events catalogue developed by 
CEEW (Mohanty 2020)

1. Bhuvan-Indian Space Research Organisation 
(ISRO)

2. United States Geological Survey (USGS)

3. USGS

4. Water Resources Information System (WRIS)

5.  National Aeronautics and Space   
Administration (NASA)

Census, 2011| Ministry of Statistics and 
Program Implementation | Government of 
India (MoSPI)|Ministry of Agriculture (MoA) 
and Farmers Welfare|Press Information Bureau 
(PIB)

Component Selected indicators Sources

BOX 2.2 The rationale for the selection of indicators

1. Exposure indicators 

Exposure in this study is referred to as the exposure of districts to extreme events. In recent decades, machine-

learning (ML) simulations and artificial-intelligence (AI) interfaced ML models have provided robust climate 

variability and hazard assessments for both the mid-term (2050) and long-term (2100) (IPCC 2018). However, these 

climatological and meteorological analyses do not provide any information on vulnerability in the short term. They 

do not account for historical events, and thereby lack hazard sensitivity indexing, which can provide granular data 

on extreme events’ frequency and intensity. The exposure indicators considered for the study are the frequency 

and intensity of hydro-met disasters and their associated events. Table 4 illustrates the categories of hydro-met 

disasters considered. It is to be noted that based on EM-Dat6 criteria, the categorisation of extreme events has 

been considered to maintain uniformity for the indexing. An extreme events catalogue for a period of (1970-2019) 

50 years developed by CEEW was used to identify extreme events district hotspots. 

2.  Sensitivity indicators 

Sensitivity to extreme events is intrinsically linked to changes in landscape indicators. The use of landscape-

based indicator analysis for mapping sensitivity to hydro-met disasters is widely accepted (Ladányi et al. 2015; 

Wu et al. 2021). The landscape indicators considered for the study are i) land-use-land-cover (LULC), ii) elevation, 

iii) soil moisture, iv) ground-water, and v) slope. At the same time, the correlation of these indicators to hydro-

6. At a global level, the Emergency Events Database (EM-DAT), developed by the Centre for Research on the 
Epidemiology of Diseases (CRED), Brussels, with support from the World Health Organization (WHO), has country-
specific data sets on various major natural, climatic, technological, and biological events (EM-DAT 2015).
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met disasters has a different degree of proportionality. A popular strategy for mapping sensitivity to hydro-met 

disasters is to identify the landscape indicators that have a high degree of proportionality to the impact (Gogoi 

et.al 2019). In our study, the degree of proportionality was determined using AHP, which is described in Section 

2.2.3.2 of this chapter. Changes in LULC attributes lead to high sensitivity and low resilient capacity. LULC is the 

most important of all the landscape indicators, and any change in it is directly proportional to the degree of impact 

of a hydro-met disaster. It has a higher degree of correlation for cyclones, followed by flood and drought. Elevation 

and slope are associated directly with other topographical attributes like soil moisture, groundwater, and LULC. But 

they significantly impact flood and drought sensitivity, and, as a result, a region’s overall sensitivity. Groundwater 

and soil moisture are directly correlated with drought and flood sensitivity (Upton and Jackson 2011). 

3. Adaptive capacity indicators

The adaptive capacity of a region is broadly dependent on its socio-economic factors. In order to account for the 

range of the climate-risk-linked socio-economic indicators, we adopted the following adaptive capacity indicators: 

i) GDDP, ii) literacy rate, iii) sex ratio, iv) critical infrastructures (accessibility and availability), v) disaster shelters 

(access), vi) population density, and vii) effectiveness of district level disaster management plans7 (DDMPs, which 

we evaluate to map their contribution to the adaptive capacity of a particular region/district). These indicators are 

directly correlated with adaptive capacity, except for population density and DDMPs. Higher literacy translates to 

greater awareness and hence better preparedness, while an increase in GDDP indicates that a district has greater 

resources to withstand economic shocks caused by climate risks. Gender is a key determinant of vulnerability to 

hydro-met disasters, and so, we include each district’s sex ratio to capture its impact on their adaptive capacity. 

National Disaster Management Authority (NDMA) guidelines require every district in India to have an annually 

updated DDMP, whose implementation is managed by the district disaster management authority (DDMA). To 

better understand the adaptive capacity scenario, we carried out a comprehensive analysis of all available DDMPs. 

A total of eight variables and 34 indicators were finalised as per the Sendai Framework for Disaster Risk Reduction 

(SFDRR) and NDMA guidelines for evaluating DDMPs. DDMPs are integral to hyper-local preparedness to avert loss 

and damage from disasters. Table 6 details the adaptive capacity correlation. 

7. To understand the status and dynamism of the DDMPs, a comprehensive evaluation of the DDMPs was carried 
out to integrate them into the larger adaptive capacity analysis. 

8. For a disaster to be entered in the EM-DAT, it must fulfil at least one of the following criteria: i) 10 or more people 
reported killed; ii) 100 or more people reported affected; iii) declaration of a state of emergency; and iv) call for 
international assistance.
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2.2.2 Mapping the exposure index  

We conceptualise exposure as the occurrence of a particular event in a particular grid 
characterised by a district boundary. This is primarily done to identify districts that are 
extreme event hotspots. CEEW has carried out a first-of-its-kind district-level profiling of 
India’s extreme climate events, including cyclones, floods, and droughts and their associated 
events through a pentad decadal analysis (Mohanty, 2020). Table 4 shows the categorisation 
of hydro-met disasters and their associated events used in the analysis. We followed the 
classification of extreme events provided by EM-DAT8, IMD, and WMO. The district-level 
assessment was carried out through spatial and temporal modelling that accounts for 
complexities and non-linear trends and patterns. The assessment examined the frequency 
and intensity of hydro-met disasters as well as the pattern of associated events and how the 
impacts have compounded on a temporal scale of 50 years (1970–2019). Further, it analysed 
shifts in trends in climate events across sub-regions. 
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We draw from the pentad decadal analysis to develop an extreme climate events catalogue 
for a historical time scale of 50 years (1970–2019) for the exposure indexing. The outcome was 
a robust gridded datasheet that captured exposure to extreme hydro-met disasters based on 
frequency and intensity. Data on the frequency of extreme events by decade for each district 
between 1970–2019 were collated to obtain pentad frequency scores. We used the percentile 
approach to normalise the aggregated values. Since our study focuses on extreme hydro-met 
events, percentile-based indices present a more detailed statistical approach to derive at 
relative exposure index at a micro level. This method is widely used in climatological studies 
due to its simplicity, flexibility, and ability to assess changes in extreme events in a particular 
area (Schär et al. 2016; DST 2020; IHCAP 2018). The percentile-based methodology of data 
normalisation is commonly used for frequency-based indicators to measure the frequency of 
extreme event thresholds9. Figure 7 provides a brief overview of the methodological approach 
used to derive the baseline exposure10 of hotspot districts. Steps 1 and 2 were adopted from 
the above study, and Step 3 was carried out to derive the district-level exposure index. 

Table 2 Classification of extreme events considered in the study

Source: Mohanty 2020

Primary disaster 
subtype

Associated event(s)

Riverine floods, coastal floods, 
flash floods, and compounded 
floods

Extreme rainfall, landslides, 
hailstorms, cloud bursts, and 
thunderstorms

Heavy rainfall, floods, 
hailstorms, cold waves, and 
tornadoes

NA

Meteorological drought and 
hydrological and agricultural 
drought

Storm surges and convective 
storms

Event type Floods Droughts Cyclones

9. The thresholds refer to the decadal frequency and intensity of the extreme hydro-met events in a particular 
district.

10. A more detailed methodological approach for the micro-level hazard assessment is available in (Mohanty 2020).

Figure 7 
Approach and 
methodology for 
exposure assessment 

Source: Authors’ analysis

Development of gridded 
exposure sheet

Geospatial analysis of extreme 
climate events using coarse-grain 
resolution temporal maps

Development of exposure 
indexing
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The non-consideration of the frequency and intensity of extreme events for developing the 
exposure index of geographies has been a limitation of previous studies. Our assessment 
used a spatio-temporal analysis to overcome this gap in line with the recommendations of 
the IPCC (IPCC 2017). This method is robust and flexible due to the incorporation of a range 
of indices and values to establish extreme event thresholds. Our methodological approach 
uses this method to maintain a uniformity that considerably addresses the gaps of a granular 
hazard assessment.  

2.2.3 Mapping the sensitivity index 

The first step of any vulnerability assessment is a comprehensive assessment of hazard-linked 
sensitivity (IPCC 2018). Our sensitivity analysis focuses on providing vital information on 
landscape-based drivers of hydro-met extremes and how changes in landscape attributes 
have triggered the intensification of these extremes. The IPCC states that the accuracy of any 
climate extremes assessment depends on both the quality and quantity of spatial data (IPCC 
2018). Further, climatological and meteorological inferences at a coarse-grain resolution can 
be mapped more effectively through gridded data sheets (GAR 2017). 
 
Thus, our methodological approach for deriving the sensitivity index is based on these broad 
steps: 

i) Development of gridded spatial layers: Gridded spatial layers of the indicators form 
the base for any geo-spatial analysis. First, we developed gridded spatial layers for various 
landscape indicators (elevation, slope, LULC, groundwater, and soil moisture) from coarse-
grain base-level maps at 25 km × 25 km resolution. These base-level maps were spatially 
analysed using a downscaling approach to derive grid-level attribution data for each 
indicator at a 30 m × 30 m resolution. The downscaling approach used Q-GIS to re-grid and 
clip sensitivity spatial layers that could easily be superimposed on exposure gridded sheets 
that identify the frequency and intensity of primary events (cyclone, flood, and droughts) 
and their associated events. We performed the grid-based analysis at the district level for all 
indicators. Since base-level maps from various sources were used for the analysis, there were 
often outliers. Hence, the data had to be normalised for all landscape indicators, creating a 
unified raster with respect to their correlations with hydro-met disasters. These correlations 
were finalised based on a literature review. 
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Figure 8 
Approach and 
methodology 
for mapping the 
sensitivity index 

Source: Authors’ analysis

Development of gridded 
spatial layers

Geo-spatial analysis for 
sensitivity indexing
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Further, we prioritised the indicators using the AHP model. The AHP model was run on the 
re-classified raster data with feed-in information on the assigned indicator weightage. The 
assigned indicator weightage was based on Saaty’s scale (Coyle 2004) and used to establish 
correlation. This enabled us to rank indicators on a scale of 1–5 for our analysis with respect 
to their correlation with hydro-met disasters. We describe the steps in detail in Section 2.2.3.1. 
Since the AHP uses comparative analysis to rank the indicators, we obtained a pairwise 
matrix (5 × 5) based on the comparison, as illustrated in Table 3.

Finally, since we ranked the indicators on a scale of 1–5 with respect to each event, we 
validated the results by computing the consistency ratio (CR), as per standard practice. A CR 
<0.1 indicates a valid AHP ranking (Section 2.2.3.2, equation 1 details the CR calculation). In 
this way, the gridded spatial layers are developed for further use for geo-spatial analysis and 
to derive a sensitivity index. We describe the detailed methodological approach in Section 
2.2.3.2.

ii) Geo-spatial analysis for sensitivity indexing: The gridded spatial layers for each 
indicator developed in the previous step form the base for the spatial analysis. To acquire 
zonal statistics, we modelled the gridded spatial layers on a Q-GIS desktop environment. 
Zonal statistics help derive the mean pixel value for each indicator in a particular district 
with respect to a particular hydro-met disaster. We derived the landscape change index 
by calculating the pixel value across each grid ‘at temporal intervals of 2005–2019’. This 
enabled us to calculate the indicator-specific weighted values fed into the sensitivity equation 
(Equation 2). We derived the sensitivity score for each district with respect to particular hydro-
met disasters. These scores were further normalised using the linear scale method to obtain 
the sensitivity index. We describe this methodological step in Section 2.3.2.2.

2.2.3.1 Development of gridded spatial layers  

Changes in LULC have been demonstrated to have significant effects on both micro and macro 
climates as they significantly contribute to land surface temperature and rainfall anomalies 
(Gogoi et al. 2019). However, very few studies have empirically established such a link in the 
Indian context. Further, a popular approach for mapping sensitivity to hydro-met disasters 
is to identify the components that cause the event and then build a sensitivity index. Various 
studies across small island developing states (SIDS) in the Pacific Islands have followed this 
approach (SPC, SPREP, and GIZ 2019), but a combined analysis of hydro-met disasters in India 
has not been done. Our study intends to fill this gap. 

Table 3 
Pairwise comparison 
matrix for flood 

Source: Authors’ analysis

Elevation

Slope

LULC

Soil moisture

Groundwater

Consistency ratio: 0.06

1.00

0.50

0.33

0.14

0.14

2.00

1.00

0.50

0.14

0.14

3.00

2.00

1.00

0.20

0.20

7.00

7.00

5.00

1.00

0.33

7.00

7.00

5.00

3.00

1.00

Elevation Slope LULC Soil moisture Groundwater
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In this context, developing gridded spatial layers is the first step in any climatological 
sensitivity analysis (WMO 2018). In recent years, GIS has been widely used in sensitivity 
analyses as it is an integrated platform that combines an information database and analytical 
tools that support vulnerability and risk assessment research and decision-making (Sanyal 
and Lu 2006; Dewan, Kumamoto, and Nishigaki 2007; Rahmati, Pourghasemi, and Zeinivand 
2016; Qi et al. 2009; Khosravi et al. 2016; Tehrany et al. 2017). Thus, we used coarse-grain 
temporal maps from various observatory sources to develop spatial layers of landscape 
attributes; we prepared gridded landscape attributes sheets at a 25 km × 25 km resolution 
using a GIS environment (Q-GIS 3.10 version). This further helped integrate multi-criteria 
decision-mapping methods like AHP and zonal statistics for robust assessments (Chakraborty 
and Joshi 2016). We performed a rigorous geospatial analysis of the gridded attribution layers 
based on selected landscape attributes at intervals of 2005 and 2019 to map the spatial and 
temporal changes. 

Changes in LULC and their implications, and the correlation of the sensitivity of districts to 
hydro-met extremes have been illustrated in Chapter 3. Changes in the gridded landscape 
spatial layers have been shown in Annexure 1. We further normalised the gridded spatial 
layers using the indicator-functional correlation with respect to hydro-met disasters. This 
methodological approach helps develop unified raster grids (Sathyan et al. 2018). We then 
re-classified the indicators to unified individual raster grids for spatial analysis at a 30 m × 30 
m resolution using the Q-GIS 3.18 desktop environment. Figure 9, in the next page, illustrates 
a gridded spatial layer for drought sensitivity analysis. 

Climate change is a global phenomenon with varied impacts on regional climate zones. 
Further, landscape attributes have a significant impact on micro-climate zone swapping 
(Mohanty 2020). The main objective of the gridded spatial data sheet is to provide a unified 
district-level mapping of the sensitivity of landscape indicators to hydro-met extremes across 
different temporal scales. These gridded spatial layers were developed using a downscaling 
approach. We used re-classified, coarse-grain resolution spatial data to derive the sensitivity 
indexing, which we will discuss in the next section. Coarse-grain resolution is crucial for 
micro-level assessments, especially composite vulnerability and risk assessments (GAR 2019). 
These spatial layers can be used to carry out sectoral and regional hazard and vulnerability 
assessments. They can provide hyperlocal insights to support risk-informed policy decisions 
at the national, sub-national and regional levels. We intend to develop robust gridded spatial 
landscape layers for future risk assessments.

Data sources 

We procured coarse-grain resolution maps for landscape indicators from 
various sources. The land-land cover maps were procured from ISRO’s 
National Remote Sensing Centre (NRSC), elevation and slope maps were 
procured from the United States Geological Survey (USGS), groundwater from 

the Water Resource Information System (WRIS), and soil moisture from NASA Giovanni 
at 25 km resolution. The slope and elevation map of India was extracted from the Shuttle 
Radar Topography Mission (SRTM) digital elevation model (DEM) with a resolution of 30 
m using the GDAL DEM utility in Q-GIS. The above temporal scale maps at 2005 and 2019 
were used for geo-spatial sensitivity analysis. 
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Figure 9 Gridded exposure spatial layer for drought sensitivity analysis

Source: Authors’ analysis

2.2.3.2 Development of the sensitivity index

In the IPCC’s Sixth Assessment Report (AR-6), the panel’s Working Group I (WGI) outlines 
the human-induced climate change (IPCC 2021). One of these is the changes that have 
occurred in landscape attributes and the manner in which they have adversely impacted 
he intensification of climate extremes. Sensitivity mapping enables the robust mapping 
of landscape attribute changes. Sensitivity is an important variable not only for assessing 
the magnitude of an extreme event’s impact but also for projecting future vulnerability to 
facilitate effective climate resilience strategies based on the geographical, social, cultural, 
financial, and political atmosphere (Bocard et al. 2018). This spatial landscape variability 
assessment helps derive a micro-level sensitivity index with specificity to primary and 
compounded events. We analysed the compounding impacts through the weighted average of 
attributes in the gridded layers. After developing the layers, we normalised the indicators and 
assigned weightage to identify the compounded impacts. This helped us estimate the degree 
of sensitivity across Indian districts. 
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Several studies have been conducted to evaluate flood, drought, and cyclone vulnerability 
and risk in different parts of the world (Hu et al. 2017). Various tools and methodologies have 
been used to identify risk and delineate it into maps; these include multiple criteria analysis 
(Hazarika et al. 2018; Sharma 2018), frequency ratio, cluster analysis, principal component 
analysis (PCA), varied statistical models (Fernandez et al. 2016a; Khosravi et al. 2016; Mollah 
2016; Rahmati et al. 2016a), AHP (Hu et al. 2017), and indicator-based indexing (Balica et al. 
2009; Balica 2012a, b; Balica et al. 2012). In the GIS environment, a multitude of modelling 
methodologies are possible (Sanyal and Lu 2006; Tehrany et al. 2013, 2014), and we adopted 
the outlined multi-step process to derive a micro-level sensitivity analysis. 

The most commonly adopted methods for assigning weights and establishing correlations 
are AHP and PCA (Hu et al. 2017). Among them, AHP is extensively used for IVA, especially 
for spatial sensitivity evaluations (Sinha et al. 2008; Fernandez and Lutz 2010; Kazakis et al. 
2015; Elkhrachy 2015; Rahmati et al. 2016b; Hu et al. 2017; Ghosh & Kar 2018). In our study, 
we used AHP to derive component-wise sensitivity scores for each of the primary hydro-met 
disasters and also used these criteria to derive compounding scenarios (flood–drought, 
drought–cyclone, cyclone–flood, and combined cyclone-flood-drought). Box 3 provides a 
brief comparison of AHP and PCA. This form of multi-criteria decision modelling (MCDM) is 
becoming increasingly popular for solving complicated problems and assessing risk because 
of its clear and strong practical applicability and its accurate representation of hydro-met 
extremes and their impact on systems (Hu et al. 2017). AHP is structured into a multi-level 
hierarchy containing objectives, criteria (indicators), sub-criteria (sub-indicators), and 
alternatives when there is no clear best choice (Ishizaka and Labib 2011). For weighing several 
criteria, it uses a pairwise comparison matrix that considers two indices together at a time; 
here, five of the landscape attributes were paired against each set of primary events. Further, 
every criterion is assigned its own ranking, with a higher weight indicating that a criterion/
indicator is more critical to the overall decision. Additionally, the consistency ratio is 
calculated to check the validity of the criteria provided during the formulation of the pairwise 
comparison matrix. 
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A spatial landscape 
variability assessment 
helps derive a micro-
level sensitivity 
index for primary and 
compounded extreme 
events 

Table 4 Comparison between AHP and PCA

Source: Authors’ compilation

AHP is a decision-making method based on qualitative 
and quantitative analyses of multi-attribute decision 
analysis methods for smoothly managing problems, 
criteria, and alternatives. This study uses multiple criteria 
decision-making (MCDM) methods to find the appropriate 
pair of weights. AHP is used extensively because of its 
simplicity, ease of use, and great flexibility. It is used 
widely to make objective pairwise judgments to obtain 
the overall priorities for the attributes (Hoque 2019). AHP 
is most widely used for its consistency and demarcation 
of outliers. 

This statistical method is used to assess problems with 
multiple variables. The main aim of applying PCA is to 
deal with data with high dimensionality. However, PCA 
faces the limitation of merely using the data distribution 
without considering domain-related knowledge 
(Vignesh et al. 2020). This is why integrated vulnerability 
assessments do not necessarily use a set of indicators 
that are not intrinsic to vulnerability assessment. 

Analytical Hierarchy Process (AHP) Principal Component Analysis (PCA)
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The normalisation process varies depending on the nature of the relationship of a particular 
indicator with the vulnerability components (direct or indirect relationship) (IHCAP 2018). 
Figure 10 illustrates the correlation of landscape indicators with hydro-met disasters. Pairwise 
comparisons are made for each extreme event – floods, cyclones, and droughts – using a 5 × 5 
matrix. Table 5 also illustrates the AHP ranking for cyclones, floods, and droughts. 

The comparative ranking is with respect to the landscape indicators (e.g., elevation and 
slope), which have a higher influence on flood occurrence than the other factors but a 
lower influence in the case of cyclones and droughts. LULC is significantly more important 
than groundwater level in case of a flood. Conversely, soil moisture and groundwater are 
considered more important than elevation, slope, and LULC in case of drought (Table 5). 
Further, LULC is pivotal for cyclone sensitivity mapping. The pairwise comparison matrix for 
sensitivity towards each hydro-met disaster helps prioritise attributes. We used the AHP-
based weight assignment technique to assign differential weights to indicators to get reliable 
results. We assigned weights to each indicator according to their significance in determining 
the overall sensitivity of a system (Song and Kang 2016). Based on these weights, we assigned 
each indicator a priority rank from 1 to 5 for each extreme event based on the Saaty Rating 
Scale 9 (Coyle 2004). This was a precursor to sensitivity index scoring. Further, we calculated 
the consistency ratio11 to check the reliability of the AHP ranks. The combination of AHP 
with GIS produces accurate environmental assessments in context involving a wide range 
of geophysical and socio-economic elements (Shukla et al. 2017; Nghiem 2017). Our analysis 
also considered the median category, i.e., the most recurring type of landform in the area. We 
derived the values using zonal statistics in the GIS desktop environment.

Figure 10 Correlation of landscape indicators with respect to hydro-met disasters

Source: Authors’ analysis

LULC

Direct correlation

Indirect correlation

Elevation

Flood Cyclone Drought

Slope Soil moisture Groundwater
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Source: Authors’ analysis

Finally, we calculated the consistency ratio (CR)11 to validate the AHP model. The results are 
flood CR = 0.05; cyclone CR = 0.02; and drought CR = 0.06. Since the CR value is less than 0.1, 
the consistency of the weight is in the acceptable range. Equation 1 calculates the CR.                                  

Table 5 AHP prioritisation ranking for floods, cyclones, and droughts

Equation 1 Consistency ratio equation

Indicators

Where, n = number of factors and λ: average value of the consistency vector

Consistency Ratio = 

Indicators IndicatorsPriority Priority PriorityRank Rank Rank

AHP prioritisation for floods AHP prioritisation for cyclones AHP prioritisation for droughts                                                

Elevation

Slope

LULC

Soil moisture

Groundwater

LULC

Elevation

Slope

Soil moisture

Groundwater

Soil moisture

Groundwater

LULC

Slope

Elevation

42.60%

29.50%

18.20%

5.90%

3.70%

46.40%

19.30%

19.30%

8.50%

6.40%

34.60%

29.30%

18.60%

9.90%

7.60%

1

2

3

4

5

1

2

2

4

5

1

2

3

4

5

11. Consistency ratio (CR) to measure how consistent the judgements have been relative to large samples of purely 
random judgements. If the CR is substantially in excess of 0.1, the judgements are untrustworthy because they 
are too close for comfort to randomness, and the exercise is deemed valueless or must be repeated.

12. The zonal statistics tools allow us to calculate statistics on values of a raster within zones defined by another 
dataset (vector or raster). The zonal statistics function calculates the values of cells based on groups of cells, or 
zones, in another dataset. Zonal statistics are output as tables. The mean zonal statistic table is used to assign the 
average of the values in each zone to all output cells in that zone.
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Consistency Index

Random Inconsistency Index

CI = 
n – 1
λ -n

Since the CR is in the reliable range, the next step was to derive a sensitivity index of hotspot 
districts for primary extreme events and associated events. Before calculating the sensitivity 
index, we conducted a zonal statistical operation12 in a GIS environment to derive the mean 
pixel values (individual grid values) for indicators and their attributes across all districts. The 
mean pixel value is important for deriving the sensitivity index for each hydro-met extreme 
across hotspot districts. Equation 2 illustrates the sensitivity equation. The weighted pixel 
score of attributes derived through zonal statistics is pivotal for carrying out the geo-spatial 
sensitivity analysis. 

We normalised the resultant sensitivity score. The obtained sensitivity index is represented 
in the form of maps in Chapter 3. It lies between one and seven, where one indicates the 
least sensitivity to an extreme event, and seven indicates the most sensitivity. The sensitivity 
index captures the degree of impact on a system in case of an event. Annexure-I (Figure A1) 
enumerates the geo-spatial temporal analysis of landscape indicators.
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Equation 2 Sensitivity Index

Sensitivity Index = (WELV × Elevation + WSL × Slope + WLULC × Land use Land cover + WSM × 

Soil Moisture  + WGW × Groundwater) 

Where, 

WELV = Assigned weightage for elevation; 

WSL = Assigned weightage for slope; 

WLULC = Assigned weightage for land use land cover; 

WSM = Assigned weightage for soil moisture and 

WGW = Assigned weightage for groundwater

2.2.4 Development of an adaptive capacity index  

We developed a quantitative indicator–based adaptive capacity index13 for our analysis. We 
finalised adaptive capacity indicators based on an extensive literature survey. Indicators 
and sub-indicators were prioritised through a stakeholder consultation, and a total of seven 
indicators were finalised. We used the Delphi technique to finalise the indicators and their 
sub-indicators and the range for adaptive capacity scoring. We finalised the following ranges: 
0–0.2 = very low; 0.21–0.4 = low; 0.41–0.6 = medium; 0.61–0.8 = high; 0.81–1.00 = very 
high. These indicators were based on their correlation to adaptive capacity, which includes 
economic, social, infrastructural, and governance aspects; these are integral to the adaptive 
capacity of a region. The adaptive capacity indicators are illustrated in Figure 11. To derive 
a robust assessment, we have included assessments of the DDMPs based on the NDMA 
guidelines (NDMA 2015). 

Figure 11 Adaptive capacity indicators considered in the study

Source: Author’s compilation

13. In the context of DRR and disaster management (DM), adaptive capacity is the ability to cope with change in a 
changing environment (IPCC 2014).
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Table 6 Correlation of adaptive capacity indicators

Source: Authors’ compilation

Status of DDMPs

Population density

Literacy rate

Gross District Domestic 
Product (GDDP)

Availability and access to 
critical infrastructure

Availability and accessibility 
to shelters

Sex ratio

Every district in India is required to have a DDMP as per NDMA guidelines. Further, 
these DDMPs should be updated annually. They provide a detailed overview of the state 
of the district’s disaster preparedness and often describe an institutional mechanism for 
building back better and developing strategies for effective preparedness. We consider 
an updated and effective DDMP to be positively correlated with adaptive capacity.

Population is a key demographic characteristic. A densely populated geography has a 
higher exposure and lower adaptive capacity. Hence, population density is negatively 
correlated.

A high literacy rate drives higher adaptive capacity because of better risk management 
knowledge and disaster preparedness (Hoffman et al. 2020). The literacy rate is thus 
positively correlated.

Economic development leads to higher adaptive capacity since communities become 
less vulnerable. Regions with a higher GDDP per capita are better able to deal with the 
consequences of climate change; hence, it is hence positively correlated with adaptive 
capacity.

Critical infrastructure protects communities from a variety of hazards and enables 
essential services to operate without disruption (World Risk Report 2016). We have 
considered educational and medical institutions as they are major disaster-risk-
reduction infrastructure, followed by all-weather roads and other critical infrastructure 
as stated in the DDMPs. This indicator is positively correlated.

Shelters provide basic evacuation support during extreme events. This indicator 
is highly crucial for flood and cyclone adaptive capacity assessments, and we have 
considered cyclone and flood rescue shelters enumerated in the DDMPs as part of the 
evaluation.

Gender is a key determinant of vulnerability to climate change, and women often bear 
the brunt of climate extremes (UNDP 2012). Marginalised women are the most affected, 
and the indicator hence has a negative correlation with adaptive capacity.

Indicators Correlation with adaptive capacity
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To map the adaptive capacity index of Indian districts, we used Census of India (2011) data. 
For all six indicators except DDMPs, this was the primary source of data. As mentioned in 
Table 6, the selected indicators cover economic, social, infrastructural, and governance 
aspects that directly or indirectly affect a district’s adaptive capacity. As mentioned earlier 
in Section 2.1.1, we adopted the Delphi method based on expert stakeholder consultations 
to allocate appropriate and accurate scores (between 0 and 1) to each indicator and their 
corresponding attributes for the adaptive capacity indicator. Learnings from the literature 
suggest that this methodological approach is widely adopted. We assigned equal weightage 
to all indicators to maintain uniformity with DST (2019) and Indian Himalayas Climate 
Adaptation Programme (IHCAP; 2018) guidelines. Further, we normalised weighted scores 
to obtain mean values for the indexing of a particular district’s overall adaptive capacity. 
Additionally, we carried out the normalisation of weighted scores based on the indicators’ 
functional correlation (IISD 2009). We considered various sub-indicators to check the status 
of DDMPs (Figure 12). 
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This evaluation of DDMPs is a first-of-its-kind attempt to identify disaster preparedness gaps 
at an institutional level. The DDMPs provide the first line of response mechanisms. Hence, 
their evaluation reveals the robustness of financial and institutional support available for de-
risking at a hyperlocal level.

2.2.5 Development of a vulnerability index of extreme event 
hotspot districts

As explained in previous sections, we adopted an IVA framework based on composite 
indicators to derive the vulnerability index of Indian districts. We combined the relative 
indices of exposure, sensitivity, and adaptive capacity to calculate the cumulative composite 
vulnerability index and categorise the most and least vulnerable regions in India among the 
hotspot districts. We carried out this indexing using spatio-temporal analysis. Further, we 
also created gridded spatial layers for each of the components to help carry out micro-level 
assessments for sectors and specific elements at risk, and devise targeted actions. We used 
the vulnerability equation to derive the vulnerability index. 

Figure 12 Sub-indicators considered for evaluating DDMPs

Source: Authors’ compilation
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Equation 2 Vulnerability function

Vulnerability is a complex and multidimensional component of climate risk assessment. 
Composite indicator–based indexing is one of the most common and widely adopted 
methodologies for quantifying the multidimensional components of integrated vulnerability 
assessment (Kelly & Adger 2000; Moss et al. 2001; IPCC 2001; Luers et al. 2003; Turner et al. 
2003). Therefore, to conduct an exhaustive integrated vulnerability assessment of India, 
we adopted a composite index–based approach. This approach requires the selection of 
indicators explicitly relevant to the disaster/hazard under consideration (Chakraborty 
and Joshi 2016). Composite indexing for an IVA typically involves three components 
of vulnerability: i) exposure, ii) sensitivity, and iii) adaptive capacity. The indicators 
considered for each of the components are i) exposure (frequency and intensity of extreme 
hydro-met disasters: floods, droughts, cyclones, and their associated events, as well as 
compounding impacts i.e., flood & drought, flood & cyclone, drought & cyclone, and flood, 
drought & cyclone events);  ii) sensitivity (landscape-based indicators: LULC, elevation, 
slope, groundwater, and soil moisture); and iii) adaptive capacity (population density, sex 
ratio, literacy rate, availability and accessibility of critical infrastructure, availability and 
accessibility to shelters, GDDP at constant rate, and effectiveness of DDMPs). 

To create a composite vulnerability index, we normalised the attribute scores of indicators 
for exposure, sensitivity, and adaptive capacity to avoid any discrepancies that might 
arise during the aggregation of variables. Exposure, sensitivity, and adaptive capacity 
consider different ranges of spatial, socio-economic, and developmental indicators; thus, 
normalisation and standardisation are essential for removing outliers and deriving a robust 
unified index (OECD 2008). Since we measured each indicator on a different scale, we 
normalised aggregated values using the percentile method for exposure and the linear scaling 
method for sensitivity and adaptive capacity (Schär 2016; Jones and Andrey 2007).

We calculated the final composite vulnerability index by aggregating index values for 
individual components, i.e., exposure, sensitivity, and adaptive capacity (TNSAPCC 2015). 
Both exposure and sensitivity share a positive correlation with vulnerability as an increase in 
either of the two values leads to an increase in a system’s vulnerability. Adaptive capacity is 
negatively correlated to vulnerability (O’Briena 2004; Adger 2006). Event-related assessments 
do not capture climatological indicators such as changes in temperature and precipitation, 
which go beyond the scope of this study. The component-wise maps illustrated in Chapter 3 
demonstrate index-specific results developed through range-based categorisation. The range-
based categorisations are very low, low, medium, high, and very high; these ranges help in 
the identification of district hotspots and the degree of landscape sensitivity contributing 
to intensification of extremes. Thus, they enable us to devise response mechanisms. Range-
based vulnerability index maps further facilitate risk-informed decision-making.
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V E S AC

Vulnerability (f)
Exposure (E) x Sensitivity (S)

Adaptive Capacity (AC)
=
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Equation 3 Linear scaling approach vis-a-vis max-min scaling

Equation used for positively related indicators, i.e., an increase in their value will cause 
an increase in the value of the component:

Normalised values of an indicator will lie between 0 and 1.

Equation used for negatively related indicators, i.e., an increase in their value will cause a 
decrease in the value of the component:

Xij Mini { Xij }

Maxi { Xij } - Mini { Xij }
=

-
Xij

P

Maxi { Xij } - Xij

Maxi { Xij } - Mini { Xij }
=Xij

N
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3. State of vulnerability of Indian districts and states  

Image: Alamy

This chapter discusses the study’s major findings. We carried out an integrated 
vulnerability assessment (IVA) using a composite indexing approach. An IVA- and 

composite index–based assessment delivers critical, comprehensive information at a micro-
scale. It explains in a unified manner why certain regions are more vulnerable than others. 
Our study enumerates exposure, sensitivity, adaptive capacity, and vulnerability at a micro 
level and outlines the vulnerability status of various zones with respect to hydro-met disasters 
and associated events. The events considered for indexing are floods; droughts; cyclones; 
flood & drought; flood & cyclone; drought & cyclone; and flood, drought & cyclone. These 
categories capture the whole range of vulnerability. This chapter also illustrates the major 
drivers of vulnerability in specific zones, districts, and states. It also provides a detailed 
snapshot of the status of DDMPs, which are key to hyperlocal adaptive capacity.
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The risks associated with climate change are complex, non-linear, and human-induced 
(IPCC, 2021). Micro-level data remain largely absent, precluding the possibility of any effective 
hyper-local assessment. Our analysis overcomes these gaps by using spatio-temporal analysis 
to understand the patterns of extreme events and their likely impacts on different districts 
in India. It is imperative to carry out a comprehensive, robust vulnerability assessment at 
a granular level using a unified approach. This study enumerates exposure, sensitivity, 
adaptive capacity, and vulnerability indices for effective risk-informed climate planning and 
mitigation. The abrupt variability of regional climate processes and phenomena, such as El 
Niño and El Niño–Southern Oscillation, and a warming climate have collectively triggered 
a surge in the frequency and intensity of extreme climate events (IPCC 2014). The surge in 
extremes is projected to intensify, and we need comprehensive and aggressive mitigation 
measures to tackle them. 

This study focuses on the geographical (spatial) and temporal dimensions of vulnerability; 
it uses an integrated vulnerability framework and composite indexing, and considers the 
frequency and intensity of extreme events. Such an integrated assessment takes into account 
the various aspects of vulnerability – socio-economic, socio-cultural, and biophysical – at a 
regional level. An increase in a region’s vulnerability to extreme hydro-met disasters is bound 
to impact all these different components, and threaten the economic sectors, populations, 
and specific elements-at-risk in a particular region. 

The next section describes the relationship between vulnerability and its components 
(exposure, sensitivity and adaptive capacity). Before aggregating the index scores for 
individual components to assess composite vulnerability, we completed a separate spatio-
temporal analysis of exposure, sensitivity, and adaptive capacity. Subsequently, we mapped 
the CVI at a regional level and drew relevant inferences. The following sections describe the 
vulnerability landscape of India and empirically establish the links between climate extremes 
and various socio-economic and landscape attributes. This analysis will inform the planning 
for and management of disasters at the sub-national and district levels.

3.1. State of exposure
India ranks seventh in the word in terms of vulnerability to climate extremes and is often 
called the flood capital. It has experienced an increased frequency and intensity of extreme 
events in recent decades. Findings from our pentad decadal analysis of extreme hydro-met 
disasters show that more than 75 per cent of Indian districts are extreme event hotspots for 
hydro-met disasters like floods, droughts, and cyclones and their associated events (Mohanty 
2020). Even more alarmingly, more than 40 per cent of these districts are showcasing a 
swapping trend, i.e., flood-prone areas are becoming drought-prone and vice versa. 

Figure 13 shows the exposure index for Indian districts. Our analysis suggests that both the 
eastern and western coasts are highly exposed to all three extreme hydro-met disasters, i.e., 
floods, cyclones, and droughts. Various studies also suggest that India’s coastal belt has been 
affected by an annual 2.5 mm rise in sea level since 1950. Indeed, a 15 × 38 mm rise in sea level 
will affect 5,763 km2 of area in coastal states, resulting in an increase in floods and tropical 
cyclones (Roy 2019).  

Based on our analysis 
Puri, Nayagarh, 
Khordha, Darbhanga, 
Ganjam and Gajapati are 
some of the districts 
exposed to all three 
hydro-met disasters
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As the Indian coastline is highly exposed to all three hydro-met disasters, certain districts 
adjacent to India’s eastern and western coasts are vulnerable to drought & cyclone and 
flood & cyclone events. Chennai is the most exposed to flood & cyclone events, followed 
by Mumbai, Imphal East, Jagatsinghpur, Gajapati, and Paschim Medinipur. Meanwhile, 
Junagadh, Jalor, Tiruchirappalli, Rohtas, and Sivaganga are the most exposed to drought & 
cyclone events. 

The north-eastern zone of India is highly exposed to extreme flood events. West Tripura, 
Dhemaji, Dhubri, Dibrugarh, and Lakhimpur are the most vulnerable to extreme floods and 
have experienced an exponential increase in the frequency of flood events since 2010. Four 
out of five of these districts are in Assam. Further, more than 20 other districts in Assam fall 
under this category, making it the most exposed state to extreme flood events. 

The central and southern regions of the Indian subcontinent are highly exposed to droughts 
and flood & drought events. A point of concern here is that some districts are either 
simultaneously facing extreme droughts and floods or that traditionally drought-prone 
areas are becoming flood-prone and vice versa (Mohanty 2020). Climate anomalies exist; for 
instance, some flood-prone districts are surrounded by drought-prone ones in central India. 
Such microclimatic changes at a granular level will pose challenges to building the resilience 
and adaptability of states and districts to multiple extreme events. 

31State of vulnerability of Indian districts and states  

Very 
Low

0.01 0.20 0.40 0.60 1.00

More ExposedLess Exposed

Flood

Drought & Cyclone
Flood, Drought & Cyclone

Flood & Cyclone
Flood & Drought

Cyclone
Drought

Moderate High Very HighLow

Exposure Index

Source: Authors’ analysis

Figure 13 The eastern and western coasts are highly exposed to all three hydro-met disasters 
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The islands of India – North and Middle Andaman, and South Andaman – are exposed to 
extreme cyclone events. Our analysis further suggests that most cyclone-exposed districts 
are experiencing multiple events like flood & cyclones or drought & cyclones, making them 
susceptible to compounding impacts. 

The state of exposure is further detailed in Sections 3.1.1–3.1.3, in which hazard-specific 
inferences are presented to derive micro-level vulnerability indexing. 

3.1.1. State of exposure: flood 

The state of flood14 events in India is abrupt and non-linear. The frequency and intensity 
of extreme events are surging. India has witnessed some devastating floods since the 19th 
century. Flood events in  India are becoming recurrent; associated flood events have surged 
six-fold since 1970s (Mohanty 2020). Our analysis suggests that more than 60 per cent of 
Indian districts are extreme flood event hotspots. 

The north-eastern zone – including Assam, Manipur, Sikkim, and Arunachal Pradesh – is 
only highly exposed to extreme flood events. However, the southern and central zones, 
including states such as Andhra Pradesh, Karnataka, and Uttar Pradesh, are exposed 
to compounded flood events, i.e., flood & drought. This confirms that most districts are 
increasingly exposed to more than one extreme hydro-met disaster. Figure 14 illustrates zone-
wise exposure to floods and extreme compounded flood events. 

Figure 14 
The north-eastern 
zone is only highly 
exposed to extreme 
flood events, but the 
central and eastern 
zones are exposed to 
compounded flood 
events

Source: Author’s analysis
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14. Flood is “a general term for the overflow of water from a stream channel onto normally dry land in the floodplain 
(riverine flooding), higher-than-normal levels along the coast and in lakes or reservoirs (coastal flooding) as well as 
ponding of water at or near the point where the rain fell (flash floods)” (EM-DAT, 2015).
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Districts with maximum exposure to extreme flood events include Darbhanga, Madhubani, 
Samastipur, Nayagarh, Puri, Chennai, and Dhemaji. Table 7 illustrates the top 20 districts 
exposed to extreme flood events. As home to several of these districts, Assam is India’s 
flood capital. But what is alarming is the surge in the frequency and intensity of flood 
events in recent decades. About 97.51 million people are exposed to extreme flood events in 
India (Mohanty 2020), and most districts are exposed to more than one extreme event. This 
highlights the importance of conducting robust and granular vulnerability assessments to 
identify the drivers of extreme events and to strategise hyper-local mitigation measures. 

3.1.2. State of exposure: drought

India is highly vulnerable to the impacts of climate change since a large share of its 
population directly or indirectly depends on agriculture and its allied sectors for their 
livelihoods (Goodess 2019). Droughts in India are categorised into three subtypes: i) 
meteorological15, ii) hydrological16, and iii) agricultural17. Further, a CEEW analysis suggests 
that droughts occur in all climatic zones in India (Mohanty 2020). According to a pentad 
decadal analysis of extreme hydro-met disasters, 68 per cent of Indian districts are exposed 
to extreme drought events. The zone-wise analysis of drought hotspot districts shows that  
India’s southern and central zones are highly exposed to extreme drought events. Further, 
the eastern and western zones are more exposed to extreme drought events than the north 
and north-eastern zones. The states with maximum exposure to extreme drought events are 
Rajasthan, Andhra Pradesh, Maharashtra, Karnataka, and Tamil Nadu. Figure 15 depicts the 
zonal drought hotspots based on our analysis.

Table 7 
Top 20 flood-exposed 
districts

Source: Authors’ analysis
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Our analysis suggests 
that 75 % of hotspot 
districts in India are 
vulnerable to extreme 
drought events and their 
compounding impacts

15. A meteorological drought is defined as the deficiency of precipitation from expected or normal levels over an 
extended period.

16. A hydrological drought is defined as deficiencies in surface and subsurface water supplies, leading to a lack of 
water for normal and specific needs.

17. Agricultural drought is usually triggered by meteorological and hydrological droughts; it occurs when soil 
moisture and rainfall are inadequate during the crop growing season, causing extreme crop stress and wilting.
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The most highly drought-exposed districts show increased vulnerability to floods and 
cyclones. Table 8 provides the top 20 exposed districts.

Figure 15 
The southern and 
central zones are 
most exposed to 
drought events

Source: Author’s analysis

Table 8 
The top 20 drought-
exposed districts

Source: Authors’ analysis

3.1.3  State of exposure: cyclone 

In India, cyclones are referred to as tropical cyclones. The zone-wise analysis of cyclone 
hotspot districts shows that the eastern part of India is highly exposed to extreme cyclone 
events. Further, the southern and western areas are more exposed than the northern and 
north-eastern zones. States like Andhra Pradesh, Karnataka, Bihar, Odisha, and Maharashtra 
are the most exposed to extreme cyclones and associated events. 
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Our analysis suggests 
that 53% of cyclone 
hotspot districts are 
highly exposed to 
extreme cyclone events 
and their compounding 
impacts
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Tropical cyclones in India are primarily the result of the ENSO phenomenon. In India, tropical 
cyclones primarily occur between November and May (Singh et al., 2000). Various studies 
show that the warming of oceans causes sea levels to rise, causing thermal-hydro expansion, 
which intensifies the strength and frequency of cyclones in the coastal regions of India 
(Mimura N., 2013). A total of 283 cyclones hit the Indian coastline between 1877 and 2005; as 
many as 106 of these were extreme cyclonic events that affected a 50 km–long strip on the 
east coast of India, and 35 hit the west coast (ADRC, 2012). 

Most districts exposed to cyclone events also show increased vulnerability to flood and 
drought events. Nayagarh, Puri, Khordha, Baleshwar, Gajapati, and Ganjam are highly 
exposed to extreme cyclone events and their compounding impacts. Table 9 lists the top 20 
exposed districts.

 
Table 9 
Top 20 highly 
cyclone-exposed 
districts

Source: Authors’ analysis

3.2 State of sensitivity
Sensitivity is the degree to which a system is affected by exposure to risks. We looked at 
district-wise sensitivity using landscape indicators to derive a sensitivity index. A sensitivity 
analysis helps assess robustness, i.e., the extent to which an indicator influences the overall 
vulnerability index. Our sensitivity analysis provides information on landscape-based drivers 
of hydro-met extremes. Sensitivity is a function of vulnerability; it is the degree to which 
an ecosystem is impacted by extreme climate events. It is useful for forecasting a country’s 
resilience to climate change based on geographical, social, cultural, financial, and political 
factors. We calculated sensitivity based on five landscape-based indicators. The following 
graph provides the correlation between each indicator and floods, cyclones, and droughts. 
Figure 16 illustrates the sensitivity index of Indian districts to extreme events.  
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3.2.1  State of sensitivity: flood 

Our analysis reveals that Indian districts show the highest sensitivity towards extreme 
flood events (compared to other hydro-met events). Approximately 91 per cent of extreme 
event–exposed districts are highly sensitive to floods and their associated events. This high 
sensitivity can be attributed to topographical features and changing land-use surface change. 

Based on the ranking of landscape indicators obtained from the AHP, elevation and slope 
are the dominant drivers of sensitivity to flooding events. The topography of the Indian 
subcontinent geographically exposes all hotspot districts to extreme floods. Another 
significant factor is land use/land cover (LULC) changes, which have significant effects on 
climate. For example, land-surface temperature and rainfall patterns have shifted in several 
districts due to land-use changes  (Gogoi, P.P., Vinoj, V., Swain, D. et al., 2019). Indeed, the 
recent trend of incessant rainfall across Indian districts has been attributed to land-use 
surface changes.

LULC indicates the types of landforms present in a geographical area and their uses, whether 
natural or by humans (SEDAC, NASA 2021). Geographical areas are often fragmented and 
have a mosaic structure consisting of an assortment of land types. They frequently comprise 
major and minor land cover types, terms that refer to the most and least common types of 
land present in a given area (Bogner 2018). Our analysis suggests that 54 per cent of all flood 
hotspot districts underwent significant LULC changes between 2005 and 2019 across major 
landscape attributes. Thus, landscape factors can intensify extreme events. 

91% of exposed districts 
are highly sensitive to 
extreme flood events
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Figure 16 More than 70 per cent of hotspot districts are highly sensitive to extreme drought events
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Soil moisture level is also used to estimate and project flood events, as there is a positive 
correlation between rainfall and soil moisture content. Indeed, high initial soil moisture 
content can double the peak of a flood, and low moisture can decrease its impact. Our 
analysis suggests that abrupt changes in soil moisture were observed between 2005 and 2019. 
In recent decades, there have been significant changes in soil moisture levels across the 
north-eastern zone, in particular due to increased dry spells and unsustainable agricultural 
practices18. The zone-wise analysis of flood hotspot districts shows that India’s southern and 
eastern zones are the most sensitive to extreme flood events, followed by the northern region. 
Even though most districts in the NE region are exposed to extreme flood events, they are 
comparatively less sensitive. The central zone of India shows the least sensitivity to extreme 
flood events. Table 10 lists zone-wise flood sensitivity.

Table 10 Flood hotspots in India

Source: Authors’ analysis
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North-east
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Bhopal, Tikamgarh, Sagar, Rewa, Balaghat, Chhatarpur, Satna

Bardhaman, Araria, Purnia, Birbhum, Nadia, Gajapati, Jalpaiguri, Maldah, Paschim 
Champaran, Gopalganj, Ganjam, Baleshwar, Darjeeling, Purulia

Ambala, Shimla, Barabanki, Leh (Ladakh), Bahraich, Kulgam, Hardwar, Kinnaur, 
Kangra, Yamunanagar, Gorakhpur

Imphal East, Kamrup, Dhalai, Lakhimpur, Karbi Anglong, South Garo Hills, 
Hailakandi, Tinsukia, South Chandel, Thoubal, Dimapur, North Tripura, Dhemaji

Dakshina Kannada, Mahbubnagar, Kozhikode, Kannur, West Godavari, Uttara 
Kannada, YSR, Chittoor, Hyderabad

Jalgaon, Kachchh, Anand, Sabar Kantha, Ratnagiri, Rajkot, Bhavnagar, Banas 
Kantha, Jamnagar, Aurangabad, Pune, Amravati, Surendranagar, Mumbai

Zone District hotspots

3.2.2  State of sensitivity: drought 

Our analysis suggests that over 70 per cent of hotspot districts are highly sensitive to extreme 
drought events. The AHP analysis indicates that while elevation and slope are the least 
dominant drivers, soil moisture and groundwater levels are key drivers of sensitivity to 
droughts (Boccard, 2018). The major drivers of meteorological droughts are micro-climatic 
changes led by anomalies in land-surface temperature and precipitation. Agricultural 
droughts are linked to changes in LULC, soil moisture levels, and the slope of the ground, 
which render water insufficient and adversely affect crop production, growth, and health 
(Sivakumar, Krishnappa, and Nallanathel 2020). 

Low soil moisture can indicate the prevalence of drought or drought-like conditions.in an 
area and therefore receives the top rank based on AHP modelling. It is defined as “the total 
amount of water, including the water vapour, in an unsaturated soil”. Soil moisture level 
depends on various factors, including weather conditions, soil type, and vegetation (NIDIS 
2021). Agricultural droughts result from short-term temperature anomalies and changes in 
rainfall; they can be measured by studying soil moisture levels (Drisya 2018). Our analysis 

18. Rapid degradation of land occurs due to fragmentation, jhum/shifting agriculture practices, and widespread 
deforestation. The increase in dry spells is also linked to the higher incidence of forest fires across the region.

More than 70% of 
exposed Indian districts 
are highly sensitive to 
extreme drought events
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Table 11 Drought hotspots in India

Source: Authors’ analysis

Central

East

North

North-east

South

West

Sagar, Rewa, Sidhi, Balaghat, Bijapur, Chhatarpur, Dewas, Jhabua

Gajapati, Ganjam, Baleshwar, Buxar, Khordha, Bhagalpur, Sundargarh, Bhojpur, 
Sheohar, Saharsa, Begusarai, Arwal, Darbhanga

Aligarh, Faizabad, Auraiya, Ghaziabad, Budaun, Pilibhit, Azamgarh, Gurgaon, 
Ambedkar Nagar

Goalpara, Morigaon, Nalbari, Darrang, West Siang, Barpeta, Sivasagar, Cachar

Dakshina Kannada, Mahbubnagar, Vizianagaram, Kozhikode, Kannur, West 
Godavari, Uttara Kannada, YSR, Hyderabad, Pathanamthitta, Kasaragod, 
Malappuram, Thiruvallur, Guntur, Koppal, Gadag, Sri Potti Sriramulu Nellore

Jalor, Sangli, Jalgaon, Kachchh, Rajkot, Bhavnagar, Banas Kantha, Jamnagar, 
Aurangabad, Nagpur, Pune, Amravati, Surendranagar

Zone District hotspots

3.2.3  State of Sensitivity: cyclone 

Traditionally, the east coast has been more exposed to cyclones. Since the 2000s, however, 
the west coast is experiencing extreme cyclone events with increasing frequency and 
intensity. The intensification of these extreme events can be attributed to changes in 
landscape attributes that contribute to micro-climatic changes and the cyclogenesis process 
(Jonathan et al., 2013). A CEEW analysis indicates that drought hotspot districts have been 
more prone to cyclonic events in recent decades (Mohanty, 2020). The frequency of tropical 
cyclones depends on humidity and pre-existing disturbances in the atmosphere (Jonathan 
2013). The ENSO phenomenon and Madden–Julian Oscillation (MJO) have an impact on 

suggests that the maximum abrupt change in soil moisture in the 2005–2019 period occurred 
in southern India, followed by the western zone. 

Groundwater levels are also essential for determining a district’s sensitivity to hydrological 
droughts and their compounding impacts (Sivakumar, Krishnappa, and Nallanathel 2020). 
Groundwater levels indicate the water available in an area, while groundwater recharge ‘is 
a function of rainfall patterns’ in a district. As the groundwater rises, so does the baseflow 
to surface water bodies. Thus, groundwater aquifers can be tapped for water, decreasing the 
potential effects and frequency of droughts. Our analysis suggests that the northern zone has 
the highest groundwater levels, followed by the southern and western areas. 

The third most important factor that influences a district’s sensitivity to droughts hazards 
is LULC. Changes in LULC and precipitation patterns play a crucial role in the occurrence of 
hydrological droughts (Qi, Yu, and Wang 2020).

Our analysis shows that of all the drought hotspot districts, 46 per cent underwent significant 
LULC changes between 2005 and 2019 across major classes, which contributed to increased 
dry spells and the intensification of droughts. Further, higher sensitivity to droughts leads to 
increased dry spells, which can intensify floods and cyclones. 
 

85% of exposed 
districts in India are 
highly sensitive to 
extreme cyclone events
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tropical cyclones (Camargo, Sobel, Barnston, and Emanuel 2007); indeed, tropical cyclones in 
India are primarily the result of the former. 

Our analysis shows that 85 per cent of the hotspot districts are highly sensitive to extreme 
cyclone events and their associated events. LULC, elevation, and slope are the dominant 
drivers of sensitivity to cyclones. The latter two have an indirect correlation with cyclonic 
events. The most important factor that influences a district’s sensitivity to cyclones is LULC. 
Changes in forest management practices, increased in deforestation, reduced forest cover, 
and unsustainable agricultural practices aggravate the impacts of cyclones and prompt the 
onset of associated hazardous events such as inland flooding and landslides (Srinivas and 
Nakagawa 2008).

Our analysis suggests that 58 per cent of districts exposed to cyclones have undergone 
significant LULC changes across major classes, which have significantly contributed to the 
intensification of such extreme events. Soil moisture variability affects cyclone formation; it 
contributes to dry spells and, as a result, the convective mechanism that drives depressions 
over land, thus reducing the intensity of storms before landfall and negatively impacting 
storm tracking simulations. While cyclonic storms continue to ravage the Indian subcontinent 
at regular intervals, it is important to focus on restoring and rehabilitating natural ecosystems 
and specific landscape attributes such as wetlands and tree cover, which can act as natural 
shock absorbers. 

Table 12 Cyclone hotspots in India

Source: Authors’ analysis

East

North

North-east

South

West

Gajapati, Ganjam, Baleshwar, Buxar, Khordha, Bhagalpur, Sundargarh, Bhojpur, 
North 24 Parganas, Sheohar, Saharsa, Begusarai, Jagatsinghpur, Arwal, Darbhanga

New Delhi, Jammu

Imphal East, Nagaon

Dakshina Kannada, North and Middle Andaman, Vizianagaram, Kozhikode, Kannur, 
West Godavari, Uttara Kannada, YSR, Hyderabad, Malappuram, Thiruvallur, Guntur, 
Sri Potti Sriramulu Nellore, Thanjavur

Jalor, Kachchh, Ratnagiri, Rajkot, Bhavnagar, Jamnagar, Mumbai, Porbandar, 
Navsari

Zone District hotspots

3.3 State of adaptive capacity
Adaptive capacity is the ability to respond to evolving stresses and hazards and design 
effective adaptation strategies to reduce the impact or magnitude of incoming disasters. This 
process has two fundamental requirements: i) the capacity to learn from past experiences, 
and ii) the application of learnings to cope with future climate-related stresses. The 
implementation of effective and efficient adaptation strategies depends on several factors like 
financial and social capital, institutional setups, skills and knowledge, natural resources and, 
most importantly, the local government. Successful implementation of robust adaptation 
strategies is not possible without the drive and willingness of those affected to act (Brooks 
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Figure 17 The eastern zone has medium-range adaptive capacity compared to all other zones

and Adger 2007). Governments and decision-makers can undertake planned or reactive 
adaptative measures depending on the scale of exposure and degree of sensitivity of states 
and districts. 

Our spatio-temporal analysis of seven adaptive capacity indicators shows that overall, India 
has a medium-to-low adaptive capacity for extreme hydro-met disasters. Around 67 per cent 
and 32 per cent of districts fall in the moderate and low ranges, respectively. Only 0.86 per 
cent of districts in India have a high adaptive capacity. The zone-wise analysis of hotspot 
districts suggests that five out of six zones in India, i.e., south, north, north-east, west, and 
central, have low adaptive capacity to extreme hydro-met disasters. However, the eastern 
zone has medium adaptive capacity. Table 13 illustrates the hazard-specific adaptive capacity 
status of Indian regions.
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Table 13 Key findings on the state of adaptive capacity for hydro-met disasters

Source: Authors’ analysis

Flood 

Drought

Cyclone

Our analysis suggests that 67 per cent of hotspot districts have medium adaptive capacity 
and 31 per cent have low adaptive capacity for extreme flooding events. Five out of 
six zones have a medium adaptive capacity, barring the eastern zone, which has a low 
adaptive capacity. Although the north-eastern zone has a medium adaptive capacity, 
states like Assam, Arunachal Pradesh, and Manipur have low adaptive capacities and are 
highly vulnerable to extreme floods. The north-eastern zone bears the brunt of the south-
west monsoons, which is responsible for the heavy precipitation that drives flood events 
in the region. Districts like Pune, Mumbai, Thane, and New Delhi have a high adaptive 
capacity for extreme flood events, indicating the presence of a prompt and efficient 
disaster preparedness and adaptation plan at the ground level. 

Around 68 per cent of Indian districts are prone to droughts; 33 per cent of the area 
suffers from chronic drought challenges. (Department of Agriculture, Cooperation and 
Farmer’s Welfare 2016). According to the Ministry of Rural Development, there has been 
a 57 per cent increase in the country’s drought-prone areas since 1997 (Chakravartty 
2015). Our analysis suggests that out of all the drought hotspot districts, 66 per cent fall 
in the medium adaptive capacity range, while 34 per cent have a low adaptive capacity for 
extreme drought events. As mentioned in Section 3.1.2, India’s southern and central zones 
face maximum exposure to extreme drought events. The southern zone is also the most 
sensitive to extreme drought events as it has shown the most change in soil moisture 
levels since the 2005s. All these factors combined make it imperative for authorities to 
enhance the resilience of these zones to combat the onset of extreme drought events. 
Our analysis suggests that land-use surface changes, soil moisture, and groundwater 
depletion have led to agricultural and meteorological droughts across these regions. 
Projections suggest that densely populated regions19 will be more prone to droughts than 
other regions, and that the frequency of droughts is likely to increase (IPCC 2014).

Our analysis suggests that overall, India’s southern, eastern, western, and north-eastern 
zones have a medium adaptive capacity to extreme cyclone events. As mentioned in 
Section 3.1.3, the southern and eastern zones are highly exposed to extreme cyclone 
events and their compounding impacts. Our analysis shows that Indian districts have 
the highest in-built adaptive capacity for extreme cyclone hazards (compared to other 
hydro-met disasters). Still, only 4 per cent of hotspot districts have a high adaptive 
capacity to extreme cyclonic events and their compounding impacts. Around 70 per cent 
of all exposed districts have a medium adaptive capacity, and 26 per cent of districts have 
a low adaptive capacity for extreme cyclonic events. Since the 2000s, most very severe 
cyclones have hit Indian coastlines, ravaging livelihoods and infrastructures. States like 
Odisha, Tamil Nadu, Andhra Pradesh, and Kerala have implemented disaster preparedness 
and response mechanisms, well-planned evacuation strategies, and robust early warning 
systems (Roy & Chatterjee 2019).

Type of hydro-met disaster Key findings

19. Population density increases will heighten water scarcity, leading to the acceleration of drought-like conditions 
(United Nations 2013; Watts 2015). 
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BOX 3.1 Key findings from the evaluation of District Disaster Management Plans

The National Disaster Management Act (2005) directs states and districts to establish disaster management 

plans. Further, it requires these plans to be revised annually to enhance resilience and adaptive capacity. Indeed, 

a district-level adaptive capacity assessment is incomplete without a robust evaluation of the DDMP. Based on 

the NDMA’s guidelines for developing a DDMP, we considered a broad set of indicators of disaster risk reduction: 

availability of DDMPs, update year, identification of hazards in DDMPs, institutional arrangements, prevention and 

mitigation, preparedness, reconstruction, and rehabilitation and recovery. Through stakeholder consultations, we 

shortlisted adaptive capacity indicators using the Delphi technique. All the indicators, except the availability of 

DDMPs, were categorised as high, medium, and low to capture the DDMP’s contribution to the adaptive capacity of 

that district. 

• Our analysis suggests that only 63 per cent of districts have a DDMP, of which only 32 per cent were updated as 

of 2019. Most DDMPs acknowledge multiple hazards but none of them capture common trends among hazards. 

• Around 45 per cent of hotspot districts have an institutional arrangement in place. 

• More than 41 per cent of these districts have established prevention and mitigation strategies. Examples include 

Baleshwar, Purvi Champaran, Prakasam, and Dibrugarh. 

• Only 17 per cent of districts have a well-structured preparedness strategy that is explicitly mentioned in the 

DDMP. Among these are Srikakulam, Ganjam, Darang, and Pune. 

Clearly, DDMPs are not robust or updated often. As the first line of institutional defence for communities, they 

should be dynamic. Decision-makers must ensure effective and implementable DDMPs to build adaptive and 

resilient capacity

3.4 State of vulnerability 
Vulnerability is a multi-dimensional concept that represents the overall climate risk profile 
of a region. The literature emphasises that the degree of adverse impacts caused by natural 
events is not only influenced by the magnitude and intensity of the hazards but also by the 
level of vulnerability of the affected society (Vittal 2020). Generating a composite district-level 
vulnerability index allows us to identify and map the individual drivers of vulnerability to 
facilitate risk-informed decision-making. Therefore, identifying and ranking well-designed 
indicators are vital for assessing a region’s overall vulnerability, building robust hyper-local 
adaptation strategies, and allocating appropriate funding (DST 2020; Birkmann 2006). 

This section presents findings from our composite vulnerability indexing of Indian districts 
using a spatio-temporal analysis. The vulnerability index was calculated by aggregating 
values for individual components, i.e., exposure, sensitivity, and adaptive capacity. Both 
exposure and sensitivity are positively correlated with vulnerability, as an increase in either 
of the two values leads to an increase in the system’s vulnerability. By contrast, adaptive 
capacity is negatively correlated with vulnerability. Our analysis suggests that 27 out of 35 
states and UTs in India20 are extremely vulnerable to hydro-met disasters.

20. To maintain uniformity across climatological, meteorological, and socio-economic indicators, we have considered 
the names and geographical extent of districts and states as per the 2011 Census. 
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Our analysis provides a micro-level vulnerability assessment of Indian districts, which 
captures non-linear patterns and the frequency of extreme events. We thereby derive a first-of-
its-kind climate vulnerability index (CVI) for Indian states with respect to hydro-met disasters. 
Our study also dwells on how India’s vulnerability is triggered by changes to landscape 
indicators (LULC, soil moisture, groundwater, slope, and elevation). The study captures 
the status of Indian districts, which is pivotal to designing effective response mechanisms. 
We also observe a surge in extreme events since 2005, primarily triggered by increasing 
landscape disruptions (inferred in our sensitivity analysis). Various studies have confirmed 
that similar landscape changes have contributed to the intensification of extremes (UNEP 
2009). Further, the urban heat island (UHI) effect21, land subsidence22, and micro-climate 
changes23 are intensifying these extremes. The other important classification of land-use 
changes attribution is land subsidence; studies suggest that land subsidence is one of the 
primary reasons for sea-level rise (Boccard 2018; Woodruff 2018). West coast states are more 
exposed to sea level rise; every one-metre rise in sea level can inundate almost 5,763 km2 of 
land (Woodruff 2018). Section 3.5 describes the CVI. A CVI will help de-risk these tail-end risks 
by mapping critical vulnerabilities, helping policymakers plan strategic actions and aiding 
adaptation by enhancing community resilience.

21. A UHI is an urban or metropolitan area that is significantly warmer than its surrounding rural areas due to human 
activities.

22. Land subsidence is defined as the lowering of the ground level from certain elevated references.

23. A micro-climate is a local set of atmospheric conditions that differ from those of surrounding areas. A micro-
climatic zone (MCZ) includes changes in climate variables like temperature and precipitation; such variations lead 
to UHIs, cloudbursts, hailstorms, and storm surges.

The southern zone is 
the most vulnerable 
in India to extreme 
climate events and 
their compounding 
impacts; it is followed 
by the eastern, western, 
northern, north-eastern, 
and central zones
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Figure 18 Of the 35 states and UTs in India, 27 are extremely vulnerable to hydro-met disasters
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Our analysis suggests that 74 per cent of all Indian districts are vulnerable to extreme climate 
events24. High exposure and sensitivity drive the high vulnerability of Indian states and 
districts. Our analysis shows that the eastern and southern zones are becoming extremely 
prone to all three hydro-met disasters.

At the district level, 39.6 per cent of hotspot districts are highly vulnerable to more than one 
hazard and 23 per cent are vulnerable to all three hydro-met disasters and their compounding 
impacts. These districts are primarily concentrated in India’s eastern and western coastal 
belts. Of these, Darbhanga in Bihar is the most vulnerable district, followed by Gajapati, 
Ganjam, and Nayagarh in Odisha. Multiple districts in Andhra Pradesh like Guntur, Krishna, 
and West Godavari also fall in this category. Table 14 illustrates the top 20 vulnerable districts 
in India. Annexure- I (Table A1) enumerates the exposure, sensitivity, and adaptive capacity 
indices and the district-level vulnerability index scores of the most vulnerable Indian 
districts.

Table 14 Dhemaji, Khammam, Gajapati, Vizianagaram and Sangli are the 5 most vulnerable districts of India

Source: Authors’ analysis
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19

20

Dhemaji

Khammam

Gajapati

Vizianagaram

Sangli

Nagaon

Chennai

Madhepura

Imphal East

Sitamarhi

Banka

Jaisalmer

Paschim Champaran

Darbhanga

Khagaria

Araria

Lakhimpur

Jodhpur

Jalor

Darrang

Flood

Flood & drought

Flood, drought, & cyclone

Drought & cyclone

Drought

Flood & cyclone

Flood & cyclone

Flood & drought

Flood & cyclone

Flood & drought

Flood & cyclone

Drought

Flood

Flood, drought, & cyclone

Flood

Flood

Flood

Drought

Drought & cyclone

Flood & drought

1.000

1.000

1.000

1.000

1.000

1.000

0.976

0.935

0.935

0.934

0.934

0.932

0.925

0.917

0.910

0.907

0.869

0.863

0.857

0.850

District Exposed to extreme climate eventsS. No. Vulnerability index score

24. Around 75 per cent of Indian districts are exposed to extreme events, and 74 per cent are vulnerable; this is a 
function of exposure, sensitivity, and adaptive capacity.
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3.4.1  State of vulnerability: flood  

Our analysis suggests that the southern zone is vulnerable to frequent floods and their 
compounding impacts. The north-eastern region is relatively more vulnerable because of the 
intensity of flash floods in the area. The eastern zone is also vulnerable to extreme floods; 
recurring riverine and coastal floods occur in the region. High flood vulnerability implies 
increased frequency of localised rainfall resulting from the complex interaction between UHIs 
and convected rain-bearing clouds that thrust downwind (downward) rainfall. 

Our findings indicate that some non-flood hotspots are also experiencing increased 
incidences of urban flooding. This can be attributed to micro-climate zone shifts, UHIs, and 
land-surface temperature increases across the central, western, and southern regions. In 
the north-eastern states, flooding is caused by landscape changes that in turn lead to micro-
climate changes and contribute to faster glacial retreat and sudden glacial lake outbursts 
(GLOFs). Given India’s high flood vulnerability, stringent measures need to be adopted. 
Chapter 4 enumerates localised recommendations that can enhance adaptive flood capacity. 

3.4.2 State of vulnerability: drought 

Droughts in India are becoming yearly occurrences; they are characterised by increased dry 
spells and seasonal rainfall anomalies. The 2002 drought, one of the severest ever to hit the 
country, affected 56 per cent of India’s geographical area and impacted the livelihoods of 300 
million people (WMO, 2007). 

Our analysis suggests that the southern and western zones are the most vulnerable to 
droughts; they are predominantly affected by agricultural droughts. The northern, eastern, 
and central zones are moderately vulnerable; an increase in the frequency of meteorological 
and agricultural droughts has been observed in these regions since the 2010s. The north-
eastern region is the least vulnerable to extreme drought events. 

The increase in drought vulnerability across regions will have ripple effects going forward. 
This surge will directly impact the vulnerable region’s agrarian sector and continue to cause 
micro-climate changes, with increased dry spells and climatological anomalies. Given that 
droughts are climatological phenomena, improving and restoring land-use-surface-change 
attributes can mitigate the impacts of extremes significantly. At the exposure level, extreme 
drought hotspots are moving towards the BWh desert climate zone25, further confirming 
that the micro-climate changes are triggering a year-on-year increase in drought frequency 
(Mohanty 2020). Monitoring droughts is an economic imperative in a changing climate. 

3.4.3 State of vulnerability: cyclones

Cyclones (or tropical cyclones) are being increasingly witnessed across the Indian 
subcontinent. India has been hit by almost three cyclones every year on average in recent 
decades. These cyclones are never single events; they are always accompanied by heavy 
rainfall, storm surges, flooding, and sea-level rise. These associated events contribute the 
most to ravaging lives and livelihoods. 

Southern and western 
zones are most 
vulnerable to extreme 
droughts

25. In a Bwh desert climate zone, there is an excess of evaporation over precipitation. The typically bald, rocky, or 
sandy surfaces in desert climates hold little moisture. Moreover, the little rainfall these zones receive evaporates.
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India’s coastline is highly vulnerable to cyclones, and the Bay of Bengal has been the 
epicentre of these cyclones since the 2010s. Our analysis suggests that the west coast has 
become increasingly vulnerable to cyclones in the last decade. Further, our composite 
indexing suggests that the southern and eastern zones are highly vulnerable to extreme 
cyclone events. However, our spatio-temporal analysis shows that the eastern districts are the 
most vulnerable to extreme cyclone events. India’s northern and north-eastern zones face few 
extreme cyclone events and, therefore, have low vulnerability. The central zone is the only 
area in India with no cyclone hotspots. 

The increased drought-like conditions fuel the cyclogenesis process that turns depressions 
into deep depressions, and deep depressions into cyclonic storms, across the warming Indian 
Ocean. Studies suggest that every 1oC rise in temperature will lead to a 10-fold increase in 
cyclone frequency and intensity. While drought-like conditions trigger the cyclogenesis 
process, cyclones are accompanied by floods, leading to a complex amalgamation of all three 
extremes. Our analysis infers these compounding trends.

3.4.4 A CVI for Indian states 

India incurs losses and damage worth USD 9–10 billion annually due to extreme climate 
events (Germanwatch 2021). In 2019 alone, it recorded 1,740 deaths due to climate extremes. 
Between 1953 and 2017, it lost more than 466 million hectares of land – roughly 10 times the 
size of Chhattisgarh and Madhya Pradesh combined – to floods (Rawat 2020). 

Risk identification should form the core of India’s climate de-risking  strategy. A 
comprehensive vulnerability assessment can provide information on the severity of the 
impacts of extreme climate events, and the IPCC states vulnerability with high-confidence 
levels (IPCC, 2012). Formulating an index entails analysing a vast amount of data. Thus, data 
availability, quality, and granularity play an important role for risk analysis (Germanwatch 
2020). 

The CVI analysis, based on IPCC’s integrated risk and vulnerability assessment framework, 
ensures a high degree of granularity and accuracy. A CVI helps map critical communities, 
sectors, assets, and specific elements-at-risk. Further, a CVI encourages climate-proof 
investments and risk-informed decisions at the sub-national and district levels since it 
identifies the degree of exposure, sensitivity, and adaptive capacity of Indian districts. In 
order to maintain uniformity, we also followed a range of indicators given in a common 
assessment framework used by DST (DST, 2020); (IHCAP, 2018).

This CVI can help reallocate finances and design tailor-made governance mechanisms to 
enhance communities’ adaptive and resilient capacities. Figure 19 illustrates the CVI for 
Indian states. 

Losses incurred due 
to damages caused by 
multi-hazard disasters 
are nearly USD 9.8 
billion, of which the 
maximum loss, i.e., USD 
7.4 billion, is because of 
flood events (The World 
Bank and GFDRR 2019)
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Figure 19 Assam, Andhra Pradesh, and Maharashtra are the most vulnerable states in India

Source: Authors’ analysis *The numbers indicate CVI rank of states 

We calculated the CVI on a sub-national level as policy planning and the implementation of 
robust strategies have a top-down- approach. To derive the CVI ranking, we based aggregate 
district-level index scores on relative absolute relative values. 

We then ranked states from most to least vulnerable based on these aggregated scores. 
We used relative indexing since it provides a unified comparison, making it an important 
addition to the sub-national vulnerability analysis; absolute values do not often provide 
this (Campbell 2018; DST 2020). Relative vulnerability indexing offers insight into spatio-
temporal attributes. We used an integrated approach with absolute values to derive individual 
component scores and relative scoring for component-wise  and comprehensive indexing. The 
literature suggests that this integrated approach can be used for geographies, sectors, and 
even asset-based vulnerability assessments (Eckstein, Künzel, and Schäfer, 2021). This can 
lead to targeted polices, actions and financing for enhancing resilience capacity.

India’s vulnerability is a matter of national concern and stepping up climate action is 
essential. Table 15 provides a heat map representation of the CVI for the top 20 states and 
UTs that need urgent and sustained long-term climate action. Assam, Andhra Pradesh, and 
Maharashtra are the three-most vulnerable states in India. These states are prone to multiple 
extreme events, e.g., Andhra Pradesh is vulnerable to cyclones and floods and Maharashtra 
to cyclones, floods, and droughts. The compounding impacts of extreme events make it a 
daunting task for decision-makers to plan mitigation strategies. 

No zone in India has 
high adaptive capacity 
to extreme hydro-met 
disasters

Very High Very Low

Darbhanga, Sitamarhi, Madhepura, 
Pashchim Champaran, Banka, Khagaria, 
and Araria districts in Bihar are most 
vulnerable to all three hydro-met 
extreme events.

Dhemaji, Nagaon, Lakhimpur, 
Dhubri, Darrang, Dibrugarh, 
Golaghat, Karbi Anglong, 
Sonitpur, and Bongaigaon 
districts in Assam are most 
vulnerable to extreme floods 
and associated events.

East Godavari, Guntur, Krishna, Prakasam, Sri Potti 
Sriramulu Nellor, Srikakulam, Vizianagaram, West 
Godavari and Y.s.r. districts in Andhra Pradesh 
are very highly vulnerable to all three hydro-met 
disasters i.e., floods, cyclones and droughts.Gulbarga, Bidar, Chamrajnagar, 

Kolar, Davanagere, Mysore, and 
Bellary are the most vulnerable 
districts to extreme climate 
events and their compounding 
impacts in Karnataka.

Ahmadnagar, Parbhani, 
Nandurbar, Nanded, and Mumbai 
districts in Maharashtra are most 
vulnerable to the compounded 
impacts of extreme events.
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Table 15 
Assam, Andhra 
Pradesh, and 
Maharashtra top 
India’s CVI

Source: Authors’ analysis
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Karnataka

Bihar

Manipur

Rajasthan
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Sikkim
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Tamil Nadu
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Jammu and Kashmir

NCT Delhi
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Uttar Pradesh

West Bengal
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Andaman and Nicobar Islands
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Daman and Diu

Leh Ladakh
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Meghalaya
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Punjab

0.616

0.483

0.478

0.465

0.448

0.424

0.423

0.408

0.370

0.368

0.365

0.339

0.329

0.328

0.290

0.280

0.269

0.257

0.250

0.226
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48

Five out of six zones 
in India are highly 
vulnerable to extreme 
climate events
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Our CVI mapping and analysis of the Indian population indicates that more than 80 per cent 
of population resides in districts that are highly vulnerable to extreme climate events. Further, 
four out of 10 people live in areas that have high exposure, of which two live in areas that do 
not have the capacity to deal with the event. Indians are extremely vulnerable to hydro-met 
disasters, and community resilience should be at the core of the India’s de-risking strategy. 

Figure 20 More than 80 per cent of the Indian population is vulnerable to extreme hydro-met disasters

Source: Authors’ analysis
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Image: Shawn Sebastian 

Between 1953–2017, India has lost 
agricultural lands 10 times the combined 
size of Chhattisgarh and Madhya Pradesh 
to floods (Rawat 2020).
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Climate change is having catastrophic impacts on communities and geographies around 
the world. India’s state of vulnerability is a grim reality that will only worsen without 

immediate intervention. In its Sixth Assessment Report, the IPCC confirms that breaching 
the 1.5°C mark is inevitable and that it will likely happen by 2030 (IPCC 2021). Given that 
India, the seventh most vulnerable country in the world, has aspirations of becoming a 
five-trillion economy, it needs a climate approach that focuses on realising a just transition 
and on climate proofing. While Indian districts become ever more vulnerable, the country’s 
leadership has been globally acknowledged for its climate vision. India is a signatory to 
and an active member of many regional and international disaster risk reduction treaties 
like the Delhi Declaration, Emergency Preparedness in South-east Asia Region (EPSEAR), 
the Sendai Framework for Disaster Risk Reduction (SFDRR), and the South Asian Annual 
Disaster Management Exercise (SAADMEX). The India–led Coalition for Disaster Resilient 
Infrastructure (CDRI) counts 27 countries as members; its mission is to build climate-/
disaster-proof infrastructures with a special focus on extremely vulnerable countries and 
small island developing states (SIDS) (CDRI 2021). 

Our analysis suggests that 27 of India’s 35 states and UTs are extremely vulnerable to hydro-
met disasters. Further, one in every two districts in each of India’s six zones is vulnerable 
to more than one extreme event. More than 40 per cent of Indian districts are exhibiting a 
swapping trend; further, these districts have a low adaptive capacity for tackling such abrupt 
changes. 
Clearly, the numbers offer a harsh reality check. Based on our analysis, we make five key 
recommendations for building a climate-resilient India:

I. Develop a climate risk atlas (CRA). 

II. Establish a climate risk commission (CRC) to mainstream climate risks in a decentralised 
manner.

III. Restore the landscape to rehabilitate and reintegrate natural ecosystems.

IV. Build climate risk–informed infrastructure across the country.

V.   Integrate climate vulnerability index–based financing instruments into investment 
decision-making.

According to the Central 
Water Commission 
(CWC), the cost of 
damages from climate-
related extreme weather 
events on infrastructure 
and housing has been 
27 million USD or three 
percent of India’s GDP
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India should adopt a 
climate risk commission 
for mainstreaming the 
environmental de-
risking mission 

More than 45% of 
hotspot districts have 
undergone rapid LULC 
changes

4.1 Develop a Climate Risk Atlas
One key learning from this study is that the traditional approach to conducting vulnerability 
assessments needs to be enhanced for comprehensive risk assessments. Applying the 
principles of risk assessment for policy and investment decisions remains central to any risk-
assessment process; they should be applied across geographies, sectors, and assets (Ghosh, 
King, Schrag, Dadi, & Ye 2015). As the morphology of climate change evolves, identifying risks 
is pivotal to building resilience. Our analysis highlights some grey areas. 

We recommend developing a high-resolution Climate Risk Atlas (CRA) – a risk-informed 
decision-making toolkit that can be used to map critical vulnerabilities at the district level. 
The atlas can identify, assess, and project chronic and acute risks, such as extreme climate 
events, heat and water stresses, crop loss, vector-borne diseases, and biodiversity collapse. 
A CRA will provide the basis for understanding, identifying, and quantifying hazards caused 
by climate change across geographies, sectors, and assets through dynamic micro-scale risk 
modelling in the short term. The CRA will further quantify risks through annual and probable 
loss estimates using a risk-rating index for sectors. It will help build resilient geographies and 
sectors, emergency support and transportation, and allied sectoral infrastructure. 

4.2 Establish a climate risk commission 

Climate change is among the most pressing threats to humanity in the 21st century, and it has 
no simple solution. As the extreme events become more frequent and intense, India needs to 
adopt a proactive climate risk mitigation strategy. This includes establishing a climate risk 
commission (CRC) (Ghosh 2021). 

The CRC should be empowered to analyse and identify the changing climate risk landscape 
through consultations beyond climate scientists and academics, and provide a robust 
directive to pave India’s climate risk strategy. This should be a biennial exercise that is 
tabled and debated in Parliament. The CRC should also have regional chapters. Our analysis 
suggests that many areas in India are developing similar, compounding risk profiles; hence 
coordination for climate actions should go beyond the national and sub-national levels to 
include regional planning with hyper-local implementation. The CRC’s model should emulate 
the functionality of the Finance Commission, but its mandates should surpass analysing and 
consulting. It should include directives for integrating national and sub-national climate 
plans with DRR plans by decentralising implementation. Currently, climate action plans 
do not consider national or sub-national assessments during the design or implementation 
phases. A CRC can bridge this gap by integrating research-based empirical evidence, plans, 
and recommended action. 

4.3 Climate sensitivity–led landscape restoration
Our micro-level sensitivity analysis suggests that landscape indicators are changing at a 
faster rate beyond thresholds. This contributes significantly to high vulnerability in districts 
and changing micro-climates (Mohanty, 2020). While system, technological, and financial 
innovations can aid climate action, the restoration, rehabilitation, and reintegration of 
landscapes and the development of a natural, ecosystems–based climate-sensitivity index 



can better contribute to enhancing the adaptive capacity of regions. A climate-sensitivity 
index will help in identifying and analysing losses and gaps in an ecosystem impacted by one 
or more hydro-met disasters. It can recommend restoring, rehabilitating, and reintegrating 
a certain attribute in a particular region. For instance, the west coast has lost most of its 
mangroves, making it susceptible to coastal flooding and cyclones. A climate-sensitivity index 
would identify the exact regions that need restoration and rehabilitation to facilitate better 
rebuilding following an extreme event. Natural ecosystems and landscapes act as shock 
absorbers, so empirical evidence–led planning will enable us to take advantage of them. 

4.4 Climate risk profile–informed infrastructure planning
India aspires to become a five trillion-dollar economy. The country is committed to investing 
over USD 1.4 trillion in high-vulnerability infrastructure, most of which has yet to be built; 
therefore, climate risk–informed planning is a national imperative (Department of Economic 
Affairs 2019).

Mainstreaming climate risk assessments can make them economically viable. Studies suggest 
that investing in disaster-/climate-resilient infrastructure can help realise benefits worth USD 
4.2 trillion in vulnerable countries; moreover, each dollar invested can fetch benefits worth 
USD 4 (Mohanty 2021). Agencies like the CDRI, which are leading global Disaster Resilient 
Infrastructure (DRI)/Climate Resilient Infrastructure (CRI) mandates, should ensure climate 
risk profile–informed planning for both built-in and planned infrastructures. This should not 
be limited to just infrastructure planning and integration of climate risk profiles, but should 
also include enhancing capacity building at the level of decision-makers, who are at the fore 
front of infrastructure planning. While vulnerability profiles and climate risk impacts are 
non-linear, the slope is getting steeper, and we are left with only a decade to step up climate 
actions. 

4.5 Climate vulnerability index–based risk financing 

High vulnerability calls for climate action, which necessitates investment in climate 
adaptation strategies. One of the missing links that can be addressed in developing CVI-
based risk financing instruments is effective risk transfer mechanisms to climate-proof 
investments. Current options are limited to catastrophe bonds and sectoral insurance, 
which do not focus on risk transfer and retention for high frequency/high intensity events. 
These bonds are expensive, sometimes costing twice the pay-outs, and do not cater to low 
frequency/low intensity events, which need affordable, accessible, and localised financing 
based on a region’s vulnerability profile (Mohanty and Raha 2021). Risk financing instruments 
should integrate physical climate risks into investment decision-making to reduce the cost 
of financing and increase the deployment of such instruments. Indeed, a CVI-based risk 
financing instrument could offer an effective risk transfer mechanism through sovereign 
guarantees while providing access to global investment pools. 

These recommendations will equip India formulate strategies to climate-proof its population, 
economies, and infrastructure. If a 1.5°C warmer future climate is inevitable, we must brace 
for its impacts and ensure that we have the means to build back better and faster when 
disaster strikes. We only have a decade left to act. The future of India’s growth story hinges on 
whether we succeed or fail.
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Each dollar invested 
in disaster-/climate-
resilient infrastructure 
can fetch benefits worth 
USD 4

A CVI-based risk 
financing instrument 
could offer effective risk 
transfer mechanisms
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Annexure I

Table A1 List of hotspot districts, their vulnerability indices and ranks

Dhemaji

Khamman

Gajapati

Vizianagaram

Sangli

Nagaon

Chennai

Madhepura

Imphal East

Sitamarhi

Banka

Jaisalmer

Pashchim Champaran

Darbhanga

Khagaria

Araria

Lakhimpur

Jodhpur

Jalor

Darrang

Mahbubnagar

Ahmadnagar

Dhubri

Jagatsinghapur

Dibrugarh

Bijnor

Khordha

Purnia

Solapur

Tirunelveli

Golaghat

West Godavari

Goalpara

Dhule

Ganjam

Mumbai

Karbi Anglong

Barmer

Flood

Flood & Drought

Flood & Cyclone

Drought & Cyclone

Drought 

Flood, Drought & Cyclone

Flood & Cyclone

Flood & Drought

Flood & Cyclone

Flood & Drought

Flood & Cyclone

Drought

Flood

Flood, Drought & Cyclone

Flood

Flood

Flood

Drought

Drought & Cyclone

Flood & Drought

Flood & Drought

Drought

Flood

Flood & Cyclone

Flood

Drought

Flood, Drought & Cyclone

Flood

Drought

Flood & Drought

Flood

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood, Drought & Cyclone

Flood & Cyclone

Flood

Drought

0.980

0.450

0.875

0.909

0.820

0.830

1.000

0.860

0.720

0.970

0.610

0.990

0.810

0.925

0.780

0.700

0.950

0.990

0.818

0.960

0.630

0.960

0.980

0.830

0.950

0.820

0.950

0.590

0.820

0.890

0.940

0.750

0.860

0.820

0.875

0.940

0.780

0.990

0.900

0.740

0.960

1.000

1.000

0.890

0.690

0.750

1.000

0.710

0.770

0.690

0.950

0.810

0.990

0.980

0.870

0.730

1.000

0.800

1.000

0.650

0.880

0.840

0.980

0.620

0.900

0.970

0.750

0.720

0.870

0.970

0.860

0.750

0.920

0.760

0.860

0.570

0.350

0.140

0.360

0.400

0.470

0.470

0.450

0.290

0.490

0.310

0.320

0.420

0.330

0.350

0.310

0.300

0.410

0.480

0.420

0.380

0.320

0.440

0.430

0.560

0.440

0.370

0.480

0.290

0.470

0.360

0.440

0.420

0.420

0.480

0.470

0.620

0.400

0.450

1.000

1.000

1.000

1.000

1.000

1.000

0.976

0.935

0.935

0.934

0.934

0.932

0.925

0.917

0.910

0.907

0.869

0.863

0.857

0.850

0.828

0.813

0.796

0.792

0.791

0.788

0.763

0.751

0.750

0.748

0.745

0.742

0.740

0.734

0.734

0.733

0.729

0.719

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

1

1

1

1

1

1

2

3

3

4

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

27

28

29

30
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

47

48

49

49

50

51

52

53

54

55

56

56

57

58

59

60

61

61

61

62

63

64

65

66

67

Yamunanagar

Sonitpur

Nayagarh

Banswara

Kupwara

Bongaigaon

Buldana

Gulbarga

Jhunjhunun

Bijapur

Bara Banki

Barpeta

Samastipur

Jorhat

Pathanamthitta

Pashchim Medinipur

Pilibhit

West Siang

Jalaun

Hingoli

Jalgaon

Guntur

Anantapur

Osmanabad

Bhopal

Surendranagar

Sheohar

Koppal

Sidhi

Krishna

Puri

Parbhani

Agra

Kushinagar

Nandurbar

Nagpur

East Siang

Baleshwar

Patna

Kendrapara

Ahmadabad

Karimganj

Flood

Flood

Flood, Drought & Cyclone

Drought

Flood

Flood

Drought

Drought

Drought

Flood & Drought

Flood

Flood & Drought

Flood & Drought

Flood

Flood & Drought

Flood & Cyclone

Flood & Drought

Flood & Drought

Drought

Drought

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood, Drought & Cyclone

Flood, Drought & Cyclone

Drought

Drought

Flood & Drought

Drought

Drought

Flood

Flood, Drought & Cyclone

Flood & Drought

Flood & Cyclone

Flood & Drought

Flood

0.780

0.910

1.000

0.760

0.590

0.810

0.820

0.930

0.820

0.930

0.810

0.970

1.000

0.930

0.740

0.720

0.630

0.630

0.820

0.760

0.630

0.700

0.740

0.960

0.700

0.860

0.575

0.740

0.680

0.850

1.000

0.820

0.680

0.890

0.760

0.680

0.900

0.675

0.890

0.610

0.930

0.910

0.950

0.870

0.740

0.630

0.960

0.870

0.650

0.610

0.730

0.660

0.860

0.740

0.540

0.880

0.920

0.750

0.780

0.780

0.490

0.520

0.970

0.840

0.630

0.550

0.930

0.780

0.860

0.840

0.670

0.700

0.700

0.430

0.690

0.700

0.550

0.800

0.940

0.910

0.570

0.760

0.750

0.930

0.380

0.450

0.450

0.390

0.320

0.410

0.440

0.470

0.500

0.380

0.440

0.450

0.340

0.490

0.440

0.540

0.330

0.330

0.370

0.370

0.420

0.420

0.330

0.510

0.370

0.490

0.370

0.460

0.460

0.450

0.530

0.360

0.480

0.470

0.430

0.560

0.400

0.480

0.390

0.540

0.540

0.470

0.713

0.709

0.705

0.704

0.701

0.698

0.694

0.692

0.686

0.679

0.674

0.671

0.668

0.663

0.651

0.636

0.626

0.626

0.622

0.612

0.612

0.600

0.594

0.593

0.586

0.576

0.573

0.568

0.568

0.567

0.566

0.561

0.560

0.557

0.557

0.557

0.556

0.548

0.547

0.546

0.543

0.542

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

Very High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High
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Vulnerability 
Index

Vulnerability

68

69

70

71

72

73

73

74

75

76

77

78

79

79

80

81

82

83

84

85

86

87

88

89

90

91

92

92

93

94

95

96

97

98

98

99

100

102

101

101

102

103

Satara

Sri Potti Sriramulu Nellore

Bidar

Chittoor

Hardoi

Yadgir

Ramanagara

Akola

Kishanganj

Auraiya

Bagalkot

Saharsa

Muzaffarpur

Nanded

Vaishali

Tinsukia

Bid

Thanjavur

Cachar

Mysore

Churu

Aurangabad

Sivasagar

Gopalganj

Rohtas

Nagappattinam

Nagaur

Rajouri

Tiruppur

Bhadrak

North 24 Parganas

West Tripura

Thoothukkudi

Kullu

Gadag

Chamrajnagar

Bhagalpur

Dharwad

Kamrup

Cuddalore

Chitradurga

Pali

Drought

Flood, Drought & Cyclone

Drought

Flood

Drought

Drought

Drought

Drought

Flood

Flood & Drought

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood & Drought

Flood

Drought

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood

Flood & Drought

Flood & Drought

Flood

Drought & Cyclone

Flood, Drought & Cyclone

Flood & Drought

Flood

Drought

Flood, Drought & Cyclone

Flood & Cyclone

Flood

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Flood, Drought & Cyclone

Flood & Drought

Flood

Flood & Drought

Flood

Drought

0.820

0.750

0.930

0.810

0.680

0.760

0.820

0.680

0.870

0.570

0.740

0.400

0.740

0.760

0.630

0.700

0.820

0.525

0.960

0.820

0.870

0.740

0.930

0.470

0.545

0.575

0.860

0.810

0.680

0.650

0.440

1.000

0.890

0.890

0.630

0.820

0.400

0.740

0.590

0.740

0.700

0.820

0.650

0.830

0.480

1.000

0.490

0.510

0.540

0.700

0.680

0.810

0.770

0.850

0.580

0.460

0.680

0.850

0.580

0.810

0.610

0.520

0.910

0.810

0.630

0.850

0.740

0.700

0.620

0.910

0.440

0.800

0.870

0.510

0.520

0.600

0.830

0.360

0.880

0.710

0.890

0.610

0.860

0.400

0.570

0.500

0.480

0.510

0.360

0.420

0.480

0.520

0.290

0.380

0.470

0.290

0.360

0.400

0.360

0.470

0.550

0.370

0.500

0.500

0.460

0.520

0.510

0.320

0.370

0.360

0.470

0.550

0.360

0.470

0.520

0.460

0.430

0.500

0.490

0.380

0.340

0.500

0.440

0.430

0.490

0.430

0.536

0.534

0.533

0.532

0.531

0.529

0.529

0.525

0.522

0.511

0.510

0.502

0.501

0.501

0.500

0.497

0.496

0.493

0.492

0.489

0.486

0.485

0.483

0.482

0.480

0.479

0.477

0.477

0.476

0.474

0.468

0.455

0.452

0.449

0.449

0.445

0.444

0.442

0.441

0.441

0.438

0.437

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

63Annexures



Mapping India’s Climate Vulnerability: A District Level Assessment

Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

103

104

105

105

106

107

108

109

110

110

111

112

113

114

114

114

115

116

117

118

118

119

120

121

122

123

124

125

125

125

126

127

128

128

129

129

130

130

131

132

132

133

Flood, Drought & Cyclone

Flood

Flood

Flood & Drought

Drought

Drought

Drought

Drought

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood & Drought

Flood

Flood

Flood

Flood & Drought

Drought

Flood

Flood & Drought

Flood & Drought

Flood & Cyclone

Flood & Drought

Flood

Flood & Drought

Drought

Drought

Flood & Drought

Flood & Drought

Flood

Flood

Flood & Drought

Drought

Flood & Drought

Flood

Drought

Flood

Flood

Flood & Drought

Flood, Drought & Cyclone

Drought

Drought

Flood, Drought & Cyclone

0.625

0.590

0.700

0.450

0.820

0.680

0.760

0.960

0.500

1.000

0.410

0.570

0.700

0.590

0.590

0.570

0.820

0.700

0.740

0.450

0.440

0.450

0.590

0.740

0.680

0.410

0.720

0.630

0.470

0.470

0.630

0.410

0.450

0.470

0.820

0.590

0.590

0.450

0.750

0.960

0.760

0.375

0.880

0.890

0.860

0.860

0.460

0.510

0.530

0.330

0.940

0.440

0.620

0.810

0.800

0.850

0.930

0.710

0.420

0.950

0.790

0.720

0.500

0.690

0.510

0.650

0.450

0.580

0.700

0.570

0.930

0.950

0.480

0.550

0.850

0.920

0.370

0.970

0.930

0.630

0.590

0.290

0.350

0.970

0.540

0.460

0.520

0.380

0.510

0.470

0.550

0.440

0.490

0.450

0.360

0.480

0.530

0.470

0.480

0.430

0.500

0.560

0.630

0.350

0.360

0.340

0.520

0.530

0.460

0.360

0.560

0.400

0.400

0.310

0.340

0.350

0.440

0.450

0.480

0.550

0.550

0.330

0.530

0.450

0.430

0.440

0.437

0.434

0.428

0.428

0.424

0.423

0.420

0.413

0.411

0.411

0.405

0.404

0.397

0.396

0.396

0.396

0.395

0.394

0.390

0.389

0.389

0.384

0.383

0.382

0.381

0.379

0.378

0.377

0.377

0.377

0.374

0.369

0.365

0.365

0.362

0.362

0.361

0.361

0.358

0.355

0.355

0.354

High

High

High

High

High

High

High

High

High

High

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate
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Rajkot

Bishnupur

Darjiling

Marigaon

Hassan

Jhansi

Jaipur

Ajmer

Y.s.r.

Madhubani

Bulandshahr

Ghaziabad

Kinnaur

Gorakhpur

Hugli

Raichur

Latur

Kangra

Pune

Munger

Koraput

Saran(chhapra)

Mandi

Ernakulam

Jaunpur

Amreli

Srinagar

Nainital

Kiphire

Upper Siang

Nalgonda

Fatehpur

Nalbari

Jalpaiguri

Bellary

North (Sikkim)

South (Sikkim)

Kollam

Cuttack

Bhilwara

Bangalore

Kachchh



Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

149

150

151

151

152

153

154

155

156

157

158

159

160

161

162

163

163

164

164

165

166

167

168

169

170

170

Virudunagar

Amravati

Ballia

Tikamgarh

Doda

Junagadh

Belgaum

Banas Kantha

Tumkur

Jamnagar

Etawah

Mandya

Visakhapatnam

Srikakulam

Nashik

Bangalore Rural

Thoubal

Jalna

Garhchiroli

Mahesana

Katihar

Viluppuram

Namakkal

Dewas

Karur

Palakkad

Ratlam

Shahdol

Idukki

Medak

Nadia

Mainpuri

Chikkaballapura

Haveri

Sundargarh

Hyderabad

Begusarai

Sheopur

New Delhi

Pratapgarh

Puducherry

Panna

Drought

Flood & Drought

Flood & Drought

Flood

Flood

Drought & Cyclone

Flood & Drought

Flood & Drought

Drought

Flood, Drought & Cyclone

Drought

Drought

Flood, Drought & Cyclone

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood

Drought

Drought

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Drought

Drought

Drought

Drought

Drought

Flood & Drought

Flood & Drought

Flood

Drought

Drought

Drought

Drought & Cyclone

Flood, Drought & Cyclone

Flood, Drought & Cyclone

Drought

Flood 

Drought

Flood

Drought

0.410

0.450

0.570

0.470

0.700

1.000

0.570

0.450

0.930

0.400

0.410

0.820

0.525

0.700

0.720

0.820

0.470

0.410

0.680

0.570

0.450

0.450

0.410

0.410

0.410

0.410

0.410

0.410

0.450

0.280

0.470

0.680

0.820

0.760

0.363

0.350

0.250

0.410

0.440

0.410

0.470

0.680

0.540

0.780

0.710

0.810

0.760

0.340

0.750

0.840

0.340

0.840

0.540

0.380

0.790

0.480

0.610

0.300

0.910

0.650

0.390

0.700

0.500

0.630

0.550

0.610

0.540

0.560

0.580

0.560

0.790

0.800

0.960

0.350

0.290

0.330

0.880

0.930

0.840

0.510

0.630

0.430

0.360

0.310

0.360

0.420

0.490

0.460

0.560

0.440

0.530

0.470

0.540

0.430

0.380

0.540

0.540

0.440

0.570

0.440

0.470

0.480

0.480

0.530

0.300

0.380

0.420

0.470

0.420

0.440

0.460

0.450

0.520

0.330

0.500

0.490

0.490

0.520

0.510

0.510

0.330

0.440

0.660

0.380

0.480

0.460

0.353

0.351

0.347

0.345

0.342

0.340

0.339

0.338

0.336

0.335

0.334

0.331

0.329

0.327

0.324

0.320

0.320

0.318

0.317

0.317

0.315

0.314

0.308

0.305

0.302

0.299

0.296

0.292

0.287

0.285

0.281

0.278

0.278

0.276

0.276

0.274

0.273

0.272

0.267

0.266

0.263

0.263

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

171

171

172

173

174

175

175

175

175

176

177

178

178

179

181

182

183

183

184

184

185

185

186

187

187

188

188

188

189

190

190

190

191

192

193

193

194

195

196

197

198

198

Ratnagiri

Etah

Kanpur Nagar

Maldah

Dimapur

Udaipur

Imphal West

Erode

Chittaurgarh

Kaushambi

Lahul & Spiti

Unnao

Madurai

Azamgarh

Shivpuri

Washim

Giridih

Anand

Vidisha

Thiruvananthapuram

Warangal

Rayagada

Dakshina Kannada

Bahraich

Raigarh

Mau

Umaria

Hamirpur

Banda

Mahoba

Kasaragod

Ariyalur

Chandrapur

Chirang

Hailakandi

Bokaro

Farrukhabad

Barddhaman

Gondiya

Thrissur

Sehore

Perambalur

Flood & Cyclone

Drought

Drought

Flood

Flood

Drought

Flood

Drought

Drought

Drought

Flood

Drought

Flood & Drought

Flood & Drought

Drought

Drought

Drought

Flood

Drought

Flood & Drought

Flood & Drought

Flood

Flood, Drought & Cyclone

Flood

Drought

Drought

Drought

Flood & Drought

Flood & Drought

Drought

Flood & Drought

Drought

Drought

Flood

Flood

Drought

Drought

Flood

Drought

Flood & Drought

Drought

Drought

0.170

0.680

0.410

0.470

0.470

0.960

0.590

0.410

0.760

0.410

0.590

0.410

0.280

0.280

0.410

0.410

0.410

0.280

0.410

0.570

0.280

0.280

0.250

0.280

0.410

0.410

0.410

0.450

0.280

0.410

0.280

0.410

0.410

0.280

0.280

0.410

0.410

0.280

0.410

0.450

0.410

0.410

0.890

0.240

0.430

0.860

0.420

0.220

0.930

0.450

0.260

0.340

0.940

0.380

0.800

0.730

0.490

0.520

0.360

0.280

0.500

0.510

0.690

0.540

1.000

0.910

0.490

0.440

0.440

0.680

0.680

0.320

0.890

0.310

0.500

0.930

0.920

0.330

0.430

0.760

0.420

0.540

0.430

0.280

0.370

0.360

0.390

0.470

0.530

0.480

0.530

0.420

0.450

0.320

0.480

0.360

0.380

0.350

0.470

0.500

0.350

0.380

0.490

0.510

0.340

0.370

0.450

0.410

0.490

0.450

0.450

0.560

0.350

0.330

0.460

0.320

0.520

0.390

0.420

0.350

0.460

0.580

0.460

0.490

0.490

0.320

0.260

0.260

0.259

0.258

0.253

0.252

0.252

0.252

0.252

0.250

0.249

0.248

0.248

0.246

0.245

0.244

0.242

0.242

0.240

0.240

0.239

0.239

0.238

0.235

0.235

0.230

0.230

0.230

0.229

0.228

0.228

0.228

0.226

0.225

0.222

0.222

0.220

0.217

0.215

0.208

0.206

0.206

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Moderate

Low

Low

Low
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

199

199

200

200

200

201

201

201

202

202

203

204

205

205

206

207

208

209

210

211

211

212

212

213

214

215

216

216

217

218

218

219

220

221

222

223

224

225

226

227

228

229

East Godavari

Rampur

Ashoknagar

Dumka

Kolar

North Tripura

Sagar

Kulgam

Muzaffarnagar

Nalanda

Kurnool

Mathura

Kheri

Anantnag

Prakasam

Rajsamand

Kanpur Dehat

Patan

Rewa

Mirzapur

Jajapur

Vellore

Theni

Wardha

Thiruvallur

Chhatarpur

Siwan

Bhojpur

Tiruchirappalli

Sawai Madhopur

Chitrakoot

Krishnagiri

Porbandar

Shimoga

Alappuzha

Adilabad

Deoria

Bhind

Rangareddy

Pithoragarh

Kozhikode

Morena

Flood, Drought & Cyclone

Drought

Drought

Drought

Drought

Flood

Flood & Drought

Flood

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Flood

Flood

Flood, Drought & Cyclone

Drought

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Flood

Drought

Drought & Cyclone

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

Flood & Drought

Flood, Drought & Cyclone

Drought & Cyclone

Drought

Drought

Drought

Flood, Drought & Cyclone

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Flood & Drought

Flood & Drought

Flood, Drought & Cyclone

Drought

0.750

0.410

0.410

0.760

0.930

0.280

0.280

0.280

0.280

0.280

0.740

0.410

0.280

0.470

0.475

0.960

0.280

0.280

0.280

0.410

0.280

0.410

0.363

0.280

0.250

0.280

0.160

0.150

0.545

0.410

0.410

0.410

0.250

0.280

0.280

0.160

0.450

0.410

0.630

0.160

0.150

0.410

0.330

0.260

0.390

0.210

0.190

0.830

0.850

0.970

0.590

0.540

0.290

0.390

0.890

0.990

0.390

0.140

0.580

0.740

0.750

0.270

0.790

0.330

0.420

0.720

0.850

0.660

0.810

0.870

0.300

0.310

0.290

0.230

0.700

0.670

0.630

0.690

0.330

0.310

0.190

0.700

0.990

0.280

0.520

0.300

0.460

0.460

0.510

0.430

0.510

0.460

0.360

0.330

0.470

0.480

0.470

0.570

0.430

0.420

0.380

0.490

0.500

0.360

0.520

0.450

0.390

0.510

0.560

0.480

0.340

0.350

0.460

0.470

0.440

0.350

0.490

0.520

0.500

0.320

0.440

0.520

0.370

0.360

0.490

0.510

0.204

0.204

0.199

0.199

0.199

0.196

0.196

0.196

0.193

0.193

0.192

0.191

0.190

0.190

0.185

0.183

0.180

0.178

0.177

0.176

0.176

0.172

0.172

0.166

0.163

0.162

0.160

0.160

0.156

0.155

0.155

0.154

0.153

0.152

0.148

0.145

0.142

0.140

0.136

0.131

0.130

0.129

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

230

230

231

232

233

234

234

235

236

237

237

238

238

239

240

241

242

243

244

245

246

247

248

249

249

250

251

252

253

254

255

256

257

258

259

259

260

261

262

263

263

264

264

Faizabad

East Nimar

Yavatmal

Uttara Kannada

Balrampur

Damoh

Aligarh

Jammu

Tiruvannamalai

Bhavnagar

Kheda

Karnal

Purba Champaran

Coimbatore

Shimla

Kottayam

Gandhinagar

Dindigul

Chandel

Gaya

Kannur

Bharuch

Satna

Bilaspur

Sikar

Vadodara

Sivaganga

Thiruvarur

Thane

Surat

Ramanathapuram

Shajapur

Saharanpur

Kolkata

Kalahandi

Nizamabad

Sitapur

Ambedkar Nagar

Kurukshetra

Ghazipur

Budaun

Buxar

Shahjahanpur

Flood & Drought

Drought

Drought

Flood, Drought & Cyclone

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Cyclone

Drought

Flood, Drought & Cyclone

Flood & Drought

Flood

Flood & Cyclone

Flood & Drought

Flood

Flood & Drought

Drought

Drought

Flood

Drought

Flood, Drought & Cyclone

Flood & Drought

Flood & Drought

Flood & Drought

Drought

Flood & Drought

Drought & Cyclone

Drought

Flood & Cyclone

Flood & Cyclone

Flood, Drought & Cyclone

Flood & Drought

Drought

Flood & Cyclone

Flood & Drought

Flood & Drought

Flood

Flood & Drought

Drought

Flood & Drought

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

0.160

0.410

0.410

0.150

0.160

0.280

0.160

0.170

0.410

0.150

0.160

0.280

0.110

0.160

0.280

0.160

0.680

0.410

0.280

0.410

0.100

0.160

0.160

0.160

0.680

0.450

0.545

0.680

0.170

0.170

0.100

0.160

0.410

0.060

0.040

0.040

0.280

0.040

0.410

0.040

0.040

0.025

0.040

0.840

0.250

0.270

0.940

0.690

0.480

0.840

0.600

0.210

0.860

0.740

0.220

0.750

0.620

0.430

0.620

0.120

0.190

0.280

0.140

0.980

0.640

0.610

0.560

0.100

0.190

0.140

0.070

0.380

0.320

0.700

0.410

0.080

0.550

0.700

0.700

0.180

0.710

0.070

0.680

0.780

0.900

0.580

0.440

0.460

0.510

0.500

0.390

0.480

0.480

0.580

0.450

0.510

0.460

0.500

0.490

0.410

0.550

0.440

0.500

0.480

0.460

0.360

0.490

0.520

0.500

0.470

0.490

0.490

0.480

0.410

0.620

0.530

0.490

0.470

0.360

0.470

0.300

0.300

0.480

0.340

0.510

0.370

0.430

0.340

0.350

0.128

0.128

0.124

0.121

0.119

0.118

0.118

0.112

0.110

0.108

0.108

0.107

0.107

0.102

0.100

0.095

0.094

0.093

0.092

0.091

0.086

0.083

0.082

0.080

0.080

0.073

0.070

0.067

0.066

0.065

0.061

0.059

0.052

0.045

0.039

0.039

0.038

0.035

0.032

0.031

0.031

0.028

0.028

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low

Low
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

265

266

267

268

269

270

271

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

Bankura

Allahabad

The Nilgiris

Kanniyakumari

Jabalpur

Lakhisarai

Rohtak

Kodagu

Bandipore

Aizawl

Ambala

Anugul

Birbhum

Chandauli

Chandigarh

Chikmagalur

Dhalai

Hardwar

Kancheepuram

Kandhamal

Katni

Kokrajhar

Leh (ladakh)

Lohit

Malkangiri

Mandla

Puruliya

Sabar Kantha

Shrawasti

Sirsa

South 24 Parganas

South Garo Hills

South Goa

Supaul

The Dangs

Uttarkashi

Balaghat

Balangir

Chatra

Karimnagar

Sultanpur

Navsari

North Goa

Flood & Drought

Flood & Drought

Flood & Drought

Flood, Drought & Cyclone

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Drought

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Drought

Flood & Cyclone

Flood & Cyclone

0.040

0.040

0.040

0.025

0.040

0.040

0.040

0.040

0.280

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.740

0.000

0.000

0.390

0.770

0.620

0.400

0.770

0.490

0.110

0.120

0.010

0.460

1.000

0.790

0.970

0.730

0.490

0.790

0.990

0.910

0.790

0.720

0.570

0.000

0.860

0.940

0.080

0.680

0.520

0.910

0.940

0.810

0.690

0.850

0.960

0.850

0.830

0.100

0.220

0.660

0.660

0.300

0.000

0.480

0.640

0.000

0.510

0.490

0.340

0.460

0.510

0.320

0.380

0.490

0.520

0.510

0.380

0.440

0.440

0.350

0.480

0.490

0.450

0.500

0.400

0.310

0.480

0.390

0.600

0.330

0.340

0.460

0.520

0.540

0.290

0.480

0.550

0.460

0.330

0.300

0.470

0.470

0.470

0.470

0.320

0.330

0.460

0.510

0.480

0.025

0.021

0.020

0.018

0.016

0.006

0.005

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Low

Low

Low

Low

Low

Low

Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

Alwar

Anuppur

Baran

Bareilly

Basti

Bhandara

Bhiwani

Bikaner

Bundi

Burhanpur

Datia

Dausa

Davanagere

Deoghar

Dhamtari

Dhanbad

Dhar

Dharmapuri

Dindori

Dungarpur

Durg

Firozabad

Garhwa

Gautam Buddha Nagar

Godda

Gumla

Guna

Gurgaon

Gwalior

Hanumangarh

Hazaribagh

Hisar

Indore

Jamtara

Jamui

Janjgir-champa

Jehanabad

Jhabua

Jhalawar

Jyotiba Phule Nagar

Kabeerdham

Kannauj

Kodarma

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.820

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.630

0.280

0.480

0.550

0.450

0.520

0.460

0.690

0.370

0.560

0.100

0.250

0.000

0.470

0.260

0.290

0.580

0.430

0.410

0.380

0.320

0.560

0.270

0.540

0.370

0.370

0.440

0.720

0.320

0.560

0.340

0.300

0.520

0.410

0.270

0.330

0.320

0.610

0.500

0.520

0.370

0.350

0.360

0.540

0.450

0.460

0.450

0.320

0.370

0.370

0.500

0.430

0.440

0.490

0.470

0.440

0.480

0.420

0.510

0.430

0.340

0.440

0.390

0.460

0.470

0.320

0.520

0.310

0.320

0.440

0.520

0.510

0.480

0.480

0.520

0.500

0.320

0.320

0.490

0.330

0.380

0.450

0.440

0.300

0.360

0.330

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low
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Rank District Event Exposure Sensitivity Adaptive 
Capacity

Vulnerability 
Index

Vulnerability

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

272

Kolhapur

Korba

Koriya

Kota

Lalitpur

Latehar

Lohardaga

Lucknow

Maharajganj

Mahasamund

Mahendragarh

Meerut

Narayanpur

Nawada

Nuapada

Palamu

Pashchimi Singhbhum

Rae Bareli

Raipur

Raisen

Rajnandgaon

Ranchi

Salem

Sant Kabir Nagar

Saraikela-kharsawan

Siddharth Nagar

Simdega

Sirohi

Sonbhadra

Tonk

Udupi

Ujjain

Varanasi

Wayanad

North & Middle Andaman

South Andaman

Yanam

Arwal

Dhenkanal

Ramgarh

Sambalpur

Malappuram

Pudukkottai

Sheikhpura

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Drought

Cyclone

Cyclone

Cyclone

Drought & Cyclone

Drought & Cyclone

Drought & Cyclone

Drought & Cyclone

Flood, Drought & Cyclone

Flood, Drought & Cyclone

Flood, Drought & Cyclone

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.025

0.000

0.510

0.100

0.150

0.500

0.200

0.340

0.180

0.370

0.370

0.480

0.460

0.380

0.540

0.330

0.400

0.330

0.550

0.300

0.320

0.450

0.460

0.460

0.480

0.350

0.260

0.290

0.350

0.430

0.440

0.310

0.320

0.450

0.090

0.360

1.000

0.600

0.000

0.820

0.650

0.690

0.000

0.890

0.000

0.700

0.510

0.460

0.470

0.460

0.320

0.300

0.310

0.370

0.440

0.470

0.370

0.470

0.400

0.320

0.360

0.480

0.320

0.350

0.530

0.500

0.430

0.370

0.490

0.370

0.340

0.410

0.320

0.420

0.440

0.440

0.480

0.470

0.380

0.440

0.380

0.380

0.470

0.320

0.440

0.340

0.440

0.440

0.420

0.310

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low

Very Low
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Source: Authors’ analysis; Data from EDGAR, ECLIPSE, REAS, SMoG and TERI
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Figure A1 Spatio-temporal analysis of landscape indicators

Source: Authors’ analysis Source: Authors’ analysis

Source: Authors’ analysisSource: Authors’ analysis
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Source: Authors’ analysis

Source: Authors’ analysis

Source: Authors’ analysis

Source: Authors’ analysis
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Source: Authors’ analysis Source: Authors’ analysis
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Table A2 Comparison of IPCC and DRR terminologies on vulnerability assessment

Source: Authors compilation from (IPCC 2014 and UNISDR 2011)

Vulnerability

Exposure

Sensitivity

Adaptive 
Capacity

The propensity or predisposition to be adversely 
affected. Vulnerability encompasses a variety 
of concepts and elements including sensitivity 
or susceptibility to harm and lack of capacity to 
cope and adapt.

The presence of people, livelihoods, species or 
ecosystems, environmental functions, services, 
resources, infrastructure, or economic, social, or 
cultural assets in places and settings that could 
be adversely affected.

The degree to which a system is affected, either 
adversely or beneficially, by climate-related 
stimuli. The effect may be direct (e.g., a change 
in crop yield in response to a change in the 
mean, range, or variability of temperature) or 
indirect (e.g., damages caused by an increase 
in the frequency of coastal flooding due to sea-
level rise).

The ability of a system to adjust to climate 
change (including climate variability and 
extremes), mitigate potential damages, take 
advantage of opportunities, or cope with the 
consequences.

The conditions determined by physical, social, 
economic, and environmental factors or 
processes which increase the susceptibility of 
individuals, communities, assets, or systems to 
the impacts of hazards.

The situation of people, infrastructure, housing, 
production capacities and other tangible human 
assets located in hazard-prone areas.

UNISDR adopts the same terminology that is 
provided by IPCC.

Coping capacity is the ability of people, 
organisations, and systems, using available skills 
and resources, to manage adverse conditions, 
risks, or disasters. The capacity to cope requires 
continuing awareness, resources, and good 
management, both in normal times as well as 
during disasters or adverse conditions. Coping 
capacities contribute to the reduction of disaster 
risks.

Climate change adaptation (IPCC 2014)Term Disaster risk reduction (UNISDR 2009) 



Image: Alamy

CEEW estimates that the direct costs of India’s lack 
of disaster preparedness in the last two decades 
amounted to Rs 13.14 lakh crore (USD 179.5 billion). 
Extreme climate events in particular have cost India 
over USD 99 billion in the last 50 years.
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