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The average electricity consumption for aluminium smelting in 
India is 14,361 kWh per tonne of aluminium
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Executive summary
emissions and fuel consumption accounted for the 
rest. Our study considers only scope 1 and 2 emissions, 
and all interventions analysed are limited to the plant 
boundary.

Renewable energy is critical for decarbonising the 
aluminium industry

Our study shows that the use of power sourced from 
renewable energy (RE) abates 49 per cent of emissions, 
corresponding to 38 MtCO2 of total emissions from the 
industry. Since aluminium production requires large 
amounts of reliable supply of electricity, it is unlikely 
that the entire electricity demand can be met through 
RE, and we, therefore, consider that 30 per cent of the 
demand would still be supplied by the captive power 
plant (CPP). Consequently, the emissions due to coal 
combustion need to be mitigated through carbon 
management, which would contribute to 21 per cent 
of the total emissions abatement. In addition, a large 
number of alumina refineries lie in close proximity 
to natural gas (NG) pipelines, and therefore, a large 
proportion of their thermal energy needs are met by 
NG. The emissions from NG combustion are also abated 
through carbon capture, utilisation, and storage (CCUS). 
Similar to the decarbonisation trajectory of the cement 
and steel industries (Elango et al. 2023; Nitturu et al. 
2023), energy efficiency expected to play a significant role, 
while fuel switching will play a limited role in aluminium 
decarbonisation. This is summarised in Figure ES1.

In terms of overall metal consumption, aluminium 
ranks second, next only to steel (NITI 2017). However, 

India’s per capita aluminium consumption is low, at 2.5 
kg, compared to the world average of 11 kg (NITI 2017), 
and has potential for growth. The installed capacity 
and production of aluminium for the year 2019–20 
were 4.1 million tonnes per annum (MTPA) and 3.6 
MTPA, respectively (IBM 2022). Given the highly energy-
intensive production process and the expected growth in 
demand, decarbonising the energy supply, particularly 
in the smelting process, will have a substantial impact 
on India’s cumulative industrial emissions. Our study 
aims to provide various decarbonising options to the 
aluminium industry that can help it strategically achieve 
net-zero targets.

A. Key insights

• The Indian aluminium industry emits 20.88 
tonnes of CO2 per tonne of aluminium

As per our estimates, the total baseline emissions in 
the production of aluminium in India is 20.88 tonnes 
of CO2 (tCO2) per tonne of aluminium. This includes the 
emissions due to direct fuel use, emissions associated 
with the electricity consumed in the process, and the 
emissions generated due to the nature of the process 
itself, also termed ‘process emissions’. The industry 
emitted nearly 77 million tonnes of CO2 (MtCO2) 
in the year 2019–20, and electricity consumption 
accounted for 80 per cent of the total, while process 

Figure ES1 Emission mitigation pathway for alumina refining and aluminium smelting
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http://164.100.94.191/niti/writereaddata/files/document_publication/niti_aluminum_upload.pdf
https://ibm.gov.in/writereaddata/files/09142022125008Aluminium_Alumina_2020.pdf
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Figure ES2 Cumulative MAC curve for the aluminium industry
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Source: Authors’ analysis

The marginal abatement cost curve for the aluminium 
industry is shown in Figure ES2. It can be seen that 
energy efficiency in alumina refining and aluminium 
smelting and waste heat recovery (WHR) through 
electrolysis off-gas are the most impactful, with negative 
marginal abatement costs (MACs). However, these 
technologies represent only 8 per cent of the total 
emission that needs to be abated. All the remaining 
carbon abatement measures have a positive MAC, 
meaning that there is a net cost incurred for facilities 
deploying these measures. The shift from coal-based 
CPPs to renewable power has the highest potential for 
carbon mitigation – at 38 MtCO2 – but also involves 
substantial costs.

Net-zero aluminium is 61% more expensive

The adoption of carbon mitigation technologies 
directly affects the cost of producing aluminium due 
to the requirement of additional capital expenditure 
(CAPEX) and operating expenditure (OPEX). In a net-

zero scenario, the industry would require a CAPEX 
of INR 2,18,241 lakh crore (USD 29 billion), and there 
would be a yearly increase in OPEX by 26,049 crore 
(USD 3.5 billion). Consequently, net-zero aluminium is 
61 per cent more expensive. Figure ES3 shows the price 
increase trajectory for net-zero aluminium. According 
to our analysis, net-zero aluminium is nearly 61 per 
cent more expensive than conventional aluminium. 
However, a 1.2 per cent decrease in production costs 
can be achieved by adopting alumina EE, aluminium 
EE and electrolysis off-gas WHR. An emission intensity 
of 16.13 tCO2 per tonne (23 per cent reduction) can be 
achieved by further using alternative fuels like biomass 
in alumina refining and retrofitting with inert anodes in 
aluminium smelting resulting in a cost increase of less 
than one per cent. However, for further decarbonisation, 
adopting RE power would result in a cost increase of 18 
per cent and net zero aluminium would cost 61 per cent 
more than the base price. Alternatively, in a scenario 
where the switch to RE power does not happen and CCS 
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is available at USD 50 per tCO2, then net-zero aluminium 
would cost 21 per cent higher than the base price 
(represented as a dotted line).

B. Key recommendations

• Incentivise RE since it is a key lever in 
aluminium decarbonisation: The majority of 
aluminium smelting plants are in states that do not 
have optimal wind power potential. Therefore, state 
governments should support the decarbonisation of 
aluminium industries by waiving or reducing open-
access charges for renewable power.

• Build an R&D ecosystem for the aluminium 
industry: There is a critical need for data and 
evidence generation on decarbonisation measures 
in the aluminium industry, especially with regard 
to energy efficiency measures such as inert anodes 
for aluminium smelters. A robust R&D ecosystem, 
including pilot projects for CCUS across all 
geographies (depleted oil and gas wells, saline and 
basalt rock formations) and utilisation pathways, 
must be achieved.

• Develop a robust measurement, reporting, 
and verification (MRV) framework to estimate 
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Source: Authors’ analysis

greenhouse gas (GHG) emissions at the process, 
equipment, and plant levels: The Ministry of 
Mines should prioritise a robust MRV framework for 
emissions monitoring to support the decarbonisation 
of the aluminium sector. The advent of carbon pricing 
makes this critical.

• Develop a CCS ecosystem in India for deep 
decarbonisation: The study shows that about 
eight million tonnes of CO₂ have to be abated in 
the aluminium industry through the CCS pathway. 
Therefore, infrastructure and technologies related to 
CCS have to be actively developed and deployed. The 
Government of India should devise a policy for CCS 
that will eventually lead to the development of the 
ecosystem in India.

• Formulate favourable policies to build a CCU 
ecosystem in the country: CCU will be critical for 
the aluminium industry to achieve net zero. However, 
CCU applications require green hydrogen, and their 
relative economic viability with CCS technology has 
to be demonstrated. Therefore, the next phase of the 
National Green Hydrogen Mission (NGHM) should 
focus on creating an R&D ecosystem for CCU in India 
to evaluate its feasibility.
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1. Introduction this is followed by refining the bauxite ore to produce 
alumina. Finally, alumina is converted into molten 
aluminium, using the process shown in Figure 1. The 
extraction of alumina from bauxite occurs through a 
multi-step process called the Bayer process, wherein 
ground bauxite ore is digested in the presence of caustic 
soda. The mixture obtained (termed ‘green liquor’) is 
heated and results in the crystallisation of amorphous 
alumina. This method is particularly advantageous 
since it is capable of handling various grades of bauxite 
and can produce a wide variety of alumina. Alumina 
is then dissolved in a compound consisting of sodium, 
aluminium, and fluorine, which then undergoes 
electrolysis. This process is called the Hall–Héroult 
process, and the resulting product is molten aluminium 
(Staley, Bridenbaugh, and Van Horn 2018).

1.1 Industry at a glance
The Indian aluminium industry contributes to roughly 3 
per cent of the global aluminium capacity. Traditionally, 
the power sector is the largest consumer of aluminium. 
A bulk of aluminium usage in India is in overhead 
conductors and power cables used in the transmission 
and distribution of electricity. India has an installed 
capacity to produce 4.1 MTPA of aluminium and 8.1 
MTPA of alumina. In the financial year 2019–20, 3.6 
MTPA of aluminium and 6.4 MTPA of alumina were 
produced in the country.

Aluminium is one of the most abundantly used metals, 
and in the non-ferrous-metals sector, it is the fastest-
growing in terms of production. It ranks second, next 
only to steel, in terms of volumes used due to its unique 
properties (NITI 2017). India’s per capita aluminium 
consumption is low, at 2.5 kg, compared to the world 
average of 11 kg (NITI 2017). According to some estimates, 
the embodied energy for aluminium is around 211 GJ per 
tonne, compared to 22.7 GJ per tonne for steel (Bureau 
of Energy Efficiency (BEE–GIZ 2018). However, since 
aluminium is much lighter than steel, the energy savings 
achieved during the lifetime of its end use are roughly 
three times higher, especially as it can replace steel in 
sectors such as mobility and transport (BEE–GIZ 2018). 
The installed capacity and production of aluminium 
in India for the year 2019–20 were 4.1 MTPA and 3.6 
MTPA, respectively (IBM 2020). Currently, the aluminium 
industry in India accounts for nearly 9 per cent of total 
industrial emissions (GHG Platform India n.d.). Given 
the highly energy-intensive production process and the 
expected growth in demand, decarbonising the energy 
supply, particularly during the smelting process, will 
have a significant impact on India’s cumulative industrial 
emissions and help achieve our climate goals, as stated at 
COP26.

The aluminium production process broadly consists of 
three steps. First, the raw material (bauxite) is mined, and 

Figure 1 A typical aluminium production process
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Source: Authors’ compilation

https://www.britannica.com/technology/aluminum-processing
http://164.100.94.191/niti/writereaddata/files/document_publication/niti_aluminum_upload.pdf
https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
https://ibm.gov.in/writereaddata/files/09142022125008Aluminium_Alumina_2020.pdf
https://www.ghgplatform-india.org/industry-sector/
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As can be seen in Figure 2, a significant number of 
alumina refining and aluminium smelting facilities are 
concentrated in the eastern part of the country due to the 
proximity of mines that produce crucial raw materials 
such as bauxite and coal. A majority of the alumina and 
aluminium production facilities are located in Odisha  
(77 and 67 per cent, respectively).

Energy consumed during the aluminium manufacturing 
process is of two types: thermal and electrical energy.  
We assume for the purposes of this study (as shown 
in Figure 3) that only thermal energy is consumed in 
the alumina refining process, since electrical energy 
is typically used for the movement of materials in the 
facility and is negligible in comparison to the overall 

Figure 2 The supply chain for aluminium production is concentrated in the eastern part of the country

Source: Authors’ compilation
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thermal energy consumption. For alumina refining, the 
Indian average is 14 GJ per tonne of alumina, whereas 
the global best is 8 GJ per tonne of alumina. In contrast, 
the average electricity consumption in India and the 
global achievable best are relatively similar. The average 
electricity consumption in India is 14,361 kWh per tonne 
of aluminium, whereas the global best is 13,599 kWh per 
tonne of aluminium (BEE–GIZ 2018). The thermal energy 
consumption for aluminium production is assumed 
to be unchanged in both the baseline and global best-
case scenarios since electricity consumption is more 
predominant in aluminium smelting while thermal energy 
is used only for anode making. Consequently, there is 
limited literature available on it.

https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
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Figure 3 Electricity emissions contribute significantly to the overall emissions
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Box 1 Utility of MAC curves

The MAC curves are obtained by plotting the CO2 mitigation cost (USD/tCO2) of a given carbon mitigation 
technology (y-axis) against the total mitigation potential (tCO2) of that technology (x-axis). Figure 4 shows the 
schematic of a typical MAC curve. The mitigation cost ranges from negative to positive; a negative cost indicates a 
net economic gain from deploying that technology, and a positive cost indicates that the entity will incur additional 
expenses to mitigate its emissions. Typically, the sum of all values on the y-axis indicates the total price per unit of 
emission for achieving net-zero emissions. In contrast, the sum of all x-axis values indicates the total CO2 emissions 
for a given period of time.

Figure 4 Schematic of a typical MAC curve
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2. Baseline emissions
In order to quantify the potential reduction in emissions, 
a baseline needs to be established. The baseline 
emissions estimation constitutes the emissions due to 
direct fuel use, emissions associated with the electricity 
consumed in the process, and the emissions generated 
due to the nature of the process itself, termed ‘process 
emissions’. The year 2019–20 was chosen as the base year 
to estimate emissions. This year was chosen to negate 
the skewing effects of the post-pandemic energy markets. 
This choice of the base year is of major consequence for 
the Indian aluminium industry since a large number of 

them consume electricity produced from coal-fired CPPs 
and the cost of coal determines the cost of electricity 
produced which will ultimately determine the overall 
cost of production. As shown in Figure 5, 80 per cent of 
the overall emissions are due to electricity consumption, 
while the remaining is split between process emissions 
and fuel consumption. These estimations take into 
account only scope 1 and 2 emissions and are limited 
to the plant boundary. For the sake of simplicity, it 
is assumed that all the electricity consumed in the 
production process is sourced from coal-based CPPs. In 
total, the industry emits nearly 77 MtCO2.

Source: Authors’ analysis

Source: Authors’ analysis
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Figure 5 Electricity emissions contribute significantly to the overall emissions

Source: Authors’ analysis
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3. Methodology for 
estimating the 
Marginal abatement 
cost

The various technology options we considered for the 
MAC curves can be broadly divided into four categories 
and are depicted in Figure 6:

i. Energy efficiency: This involves reducing the energy 
consumption per unit output in existing equipment 
or extracting thermal energy or generating electrical 
energy through WHR.

ii. Alternative sources of energy: This decarbonisation 
lever uses alternative fuels such as NG, biomass, 
and renewable sources of electricity to meet energy 
demands.

iii. Emerging decarbonisation technology: This 
involves horizon technologies such as inert anodes 
that not only minimise energy consumption – and, 
therefore, CO2 emissions – but also abate other GHGs 
and increase the productivity of the plant.

iv. Emission management: It involves managing the 
remaining emissions by CCUS and carbon offsets 
through afforestation.

The evaluation of the abatement cost for each of the 
mitigation options involves three steps, as shown in 
Figure 7. First, facility-level data was collated and used to 
estimate the MAC for various carbon mitigation measures. 
To evaluate the MAC, we considered a discounted 
payback period for the required CAPEX over the lifetime 
of the equipment. We considered the scaling factor for the 
capital cost of the energy-efficiency equipment in order to 
reflect the cost in proportion to the size of the equipment. 
Based on industry feedback, the operating costs for 
the equipment were assumed to be a percentage of the 
CAPEX or a function of the net fuel or electricity (after 
accounting for the savings that result from the adoption 
of the energy efficiency or decarbonisation measure) 
used to operate the equipment. Second, the MACs of 
the mitigation technology were plotted against the 
emission reduction for each of the technologies analysed. 
Lastly, the investment required to transition to net-zero 
aluminium production was estimated and its effect on 
cost of aluminium was determined. 
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Figure 6 Carbon abatement options for aluminium manufacturing
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Figure 7 Schematic representation of our methodology

Source: Authors’ compilation 
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4. Methodology
4.1 Energy efficiency in alumina refining

The average thermal energy consumption in an Indian 
alumina refinery is 14 GJ per tonne of alumina, whereas 
the current best achievable value is 8 GJ per tonne 
of alumina, as depicted in Figure 3. Given the scope 
for reduction in thermal energy consumption, energy 
0efficiency measures will be one of the key steps in 
the decarbonising of the alumina refining process. A 
literature survey showed that measures such as double 
digesters and the installation of falling film evaporators 
are still at a low technology readiness level (TRL) (BEE–
GIZ 2018).

For the analysis presented in this report, the MACs for 
energy efficiency measures for alumina refining were 
estimated differently from those of other mitigation 
technologies. An in-depth analysis regarding energy 
efficiency technologies for the cement and steel industries 
revealed that the nature of these technologies is similar 
across hard-to-abate industries. Therefore, the capital 
and operational costs of installing it, normalised to 
the quantum of energy savings, will be similar for the 

aluminium industry. However, due to a lack of data 
regarding the efficacy of specific energy efficiency 
measures in the context of alumina refineries, the 
achievable energy reduction is taken as the difference 
between the energy consumption of the most efficient 
process in the world and the average energy consumption 
in an Indian alumina refinery, as shown in Figure 3 
Consequently, the MAC for energy efficiency measures for 
alumina refining was estimated as the weighted average 
of the MACs and their abatement potential for all the 
technologies analysed for the cement and steel industries, 
which resulted in a reduction in thermal energy 
consumption. This value was estimated at USD −29.06/
tCO2 (Elango et al. 2023; Nitturu et al. 2023).

4.2 Energy efficiency in aluminium 
smelting

The literature survey revealed that the use of energy 
efficiency measures is far more prevalent for aluminium 
smelting than for alumina refining. Therefore, data 
regarding specific efficiency technologies and the capital 
and operational costs of installation were available. In 
our analysis, we consider two specific energy efficiency 
measures – namely, electrolysis off-gas WHR and cell 

Source: Authors’ analysis
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Figure 8 Natural gas infrastructure in proximity to alumina refineries and aluminium smelters

https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
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Figure 9 Fuel switch in alumina refining
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operation optimisation. Furthermore, another measure, 
simply termed ‘energy efficiency measures for aluminium 
production’, was considered. This was done in order 
to bridge the gap between the Indian average and the 
current global best achievable electricity consumption 
in a smelting plant after accounting for energy reduction 
achieved by the two measures previously described. 
The MAC for this technology was estimated along the 
same lines as energy efficiency for alumina refining but 
only considered technologies resulting in a reduction in 
electrical energy consumption, resulting in an MAC of 
USD −25.64/tCO2 (Elango et al. 2023; Nitturu et al. 2023).

In addition, the inert anode is also considered an energy 
efficiency measure, even though it is categorised as an 
emerging decarbonisation measure, which currently has 
a TRL of 1 (BEE–GIZ 2018). The use of inert anodes results 
in a reduction in electricity consumption by 1,000 kWh 
per tonne of aluminium (Kvande and Haupin 2001) and 
is therefore considered an energy efficiency measure. The 
benefits of the use of inert anodes are discussed in detail 
in Annexure II.

4.3 Alternative fuels for alumina refining

In our analysis, we assume that the entire thermal energy 
requirement is sourced from coal combustion. To reduce 
emissions, we propose switching to alternative fuels such 

as biomass and NG. A mapping of the alumina refineries 
and their proximity to an existing or upcoming NG 
pipeline (shown in Figure 8) showed that nearly 89 per 
cent of alumina production capacity lies within 25 km of 
a pipeline. Consequently, it is considered that 89 per cent 
of the heat demand is met by NG, while the remaining is 
sourced from biomass.

Our estimates show that to source 89 per cent of the heat 
requirement for alumina refining from NG, 0.79 tonnes of 
coal per tonne of aluminium needs to be replaced by 0.31 
tonnes of NG per tonne of aluminium. This translates to a 
total demand of 2.9 billion cubic metres (bcm) of NG. To 
make up the remaining energy requirement from biomass, 
0.10 tonnes of coal per tonne of aluminium needs to 
be replaced with 0.12 tonnes of biomass per tonne of 
aluminium. This amounts to an annual biomass demand 
of 2.9 MTPA.

Figure 9 shows the breakdown of the delivered cost of 
NG and biomass. The delivered cost of NG is taken to 
be USD 11.3 per gigajoule, and it largely depends on its 
import price, while tax, cost of transport, and distribution 
account for the rest. In the case of biomass, the cost of 
the product itself accounts for most of the delivered cost 
and is taken as USD 4.7 per gigajoule (TIFAC 2018). The 
biomass source is considered to be within 200 km of the 
refining unit.

https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
https://link.springer.com/article/10.1007/s11837-001-0205-6
https://www.researchgate.net/publication/328686493_Estimation_of_Surplus_Crop_Residue_in_India_for_Biofuel_Production


Evaluating Net-zero for the Indian Aluminium Industry: Marginal Abatement Cost Curves of  Carbon Mitigation Technologies12

4.4 Renewable energy

The role of round-the-clock (RTC) RE is to offset the coal-
based captive and grid electricity consumption. In the 
analysis, we obtained the cost of generating RTC RE and 
the solar, wind, and battery capacities required to meet 
the power demand based on recent tenders for grid-scale 
wind–solar–battery hybrid power plants (ReNew 2021). 
This hybrid power plant can supply 400 MW of RTC RE 
using the combined electricity generation capacity of 
a 400-MW solar power plant, a 900-MW wind power 
plant, and 100 GWh of battery storage. As per the prices 
and terms of this tender, we assumed that RTC RE power 
is available at 3.60 INR/kWh at the generation point, 
with an 80 per cent availability on an annual basis. We 
assumed that the remaining power requirement that is 
to be sourced from RE power is obtained from banked 
renewable energy from the grid.

We obtained the landed costs of RTC RE across various 
states where aluminium manufacturing takes place, 
including banking charges, from the open-access 
tariff calculator developed by the Council on Energy, 
Environment and Water (CEEW) Centre for Energy Finance 
(CEF) (CEEW–CEF 2023). To estimate the abatement cost 
of switching from CPP to RE, we considered that CPPs 
generate electricity at INR 3.72 per kWh (Ramakrishnan 
2018). It should be noted that in this case, the threshold 
for RE replacement is taken as 70 per cent. This was done 
to make up for the intermittency of RE, which would 
inhibit the continuous supply of power to the smelter 
plants. The turndown ratio for conventional power plants 
is about 30 per cent. Hence, the replacement ratio was 
chosen as 70 per cent (Central Electricity Authority (CEA) 
2019).

Figure 5 shows that 80 per cent of the total emissions are 
due to captive electricity produced in coal-fired power 
plants. After energy efficiency measures are in place, we 
estimate that the demand for electricity will be reduced 
from the current 14,361 kWh per tonne of aluminium to 
12,599 kWh per tonne of aluminium. However, it should 
be noted that inert anodes are not yet commercially 
available. If inert anodes are not taken into consideration, 
the net energy consumption reduces to 13,599 kWh per 
tonne. Additionally, literature sources show that when 
conventional carbon anodes are used, the combustion of 
the anode material provides a certain amount of thermal 
energy required for the electrolysis process. Retrofitting 
these carbon anodes with inert anodes will lead to 

increased electricity consumption to make up for the loss 
in thermal energy (Kvande and Haupin 2001). However, 
literature sources also reveal that altering inter-polar 
distances and insulating cell walls will reduce heat losses 
and consequently lead to reduced demand for electricity. 
In addition, inert anodes last an average of two years, 
in contrast to carbon anodes, which last a month, since 
they are used up during the electrolysis process. Since 
each smelter plant consists of 100 to 400 individual cells 
(Kvande and Drabløs 2014), anodes are manufactured 
in captive units. Taking into account the energy 
consumption for anode manufacturing as well, there is 
a net reduction in energy consumption by 1 kWh/kg of 
aluminium produced (Kvande and Haupin 2001) if inert 
anodes are used. Therefore, this analysis considers the 
net electricity demand after energy efficiency is achieved, 
including inert anode installation, to be 12,599 kWh.

The installation of energy efficiency technologies reduces 
the electricity demand, and consequently, a lower 
installed capacity of RE is required. Out of the total 
requirement of 6.32 GW of  power that is to be provided 
to the smelting facility, we estimate that 3.95 GW will be 
from RTC RE, which includes 20 per cent banking to make 
up for 80 per cent availability of RE power, while the 
remaining 2.37 GW will be captive power capacity.

4.5 Post-combustion technology

Deep decarbonisation of the aluminium industry, beyond 
the use of energy efficiency measures, renewable energy, 
and alternative fuels, necessitates the use of alternative 
CO2 abatement measures such as CCUS. Using existing 
pipeline infrastructure ensures that issues related to the 
right-of-way for transporting CO2 to storage locations 
are overcome and the cost of laying new pipelines is 
eliminated. As seen in Figure 8 nearly 89 per cent of 
alumina refineries and aluminium smelters lie within a 
25-km radius of a pipeline and can therefore implement 
CCS. However, India does not yet have an established 
CCUS ecosystem. The trajectory of India’s decarbonisation 
pathway will decide the cost of abatement of CCUS, 
given other competing mitigation measures such as 
alternative fuels. Therefore, CCS and CCU have equal 
shares in CO2 abatement through CCUS. In addition, CO2 
capture has a peak efficiency of 85 per cent to 90 per cent. 
The remaining CO2 needs to be mitigated using offset 
mechanisms such as afforestation or direct air capture 
(DAC). A detailed analysis of the CCUS mechanism in 
India is presented in Annexure III.

https://renewpower.in/wp-content/uploads/2021/08/ReNew_Power_PPA_SECI_RTC_V6-NJ.pdf
https://www.ceew.in/cef/intelligence/tool/open-access-advanced
https://www.thehindubusinessline.com/economy/cement-cos-see-savings-in-captive-power-plants/article64106091.ece
https://www.thehindubusinessline.com/economy/cement-cos-see-savings-in-captive-power-plants/article64106091.ece
https://cea.nic.in/old/reports/others/thermal/trm/flexible_operation.pdf
https://cea.nic.in/old/reports/others/thermal/trm/flexible_operation.pdf
https://link.springer.com/article/10.1007/s11837-001-0205-6
https://journals.lww.com/joem/fulltext/2014/05001/the_aluminum_smelting_process_and_innovative.6.aspx
https://link.springer.com/article/10.1007/s11837-001-0205-6
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5. MAC for the 
aluminium industry

5.1 Net-zero trajectory for the aluminium 
industry

Our analysis shows that deploying energy efficiency 
measures in alumina refining can reduce emissions by 
a mere 5 per cent, which corresponds to a reduction 
in thermal energy requirement of 11 GJ per tonne of 
aluminium and abatement of 1.03 tCO2 per tonne 
of aluminium. This reduction was estimated as the 
difference in energy consumption between an average 
Indian plant and the most efficient plant in the world 
(BEE–GIZ 2018). This is depicted in Figure 10. Energy 
efficiency measures such as installation of falling film 
evaporators, optimisation of temperature and residence 
time of second-stage digestion, proper descaling of flash 
tanks, installation of plate heat exchangers, and so on 
contribute to the reduction in thermal energy demand.

Similar to energy efficiency measures for alumina 
refining, deploying energy efficiency measures for 
aluminium smelting would reduce emissions significantly 
by 18 per cent. A large share of this, 14 per cent precisely, 
is due to the use of inert anodes for smelting. Electrolysis 
off-gas WHR, cell operation optimisation, and other 
measures contribute to the remaining reduction in 
emissions.

The use of alternative fuels such as NG and biomass for 
alumina refining abates 3 per cent of the emissions. Our 

Figure 10 Emission mitigation pathway for alumina refining and aluminium smelting

Source: Authors’ analysis
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analysis considers that 89 per cent of thermal energy 
comes from NG, thereby abating 0.57 tCO2 per tonne of 
aluminium, while the remaining energy is sourced from 
biomass, abating 0.17 tCO2 per tonne of aluminium. 
However, the emissions from the combustion of NG need 
to be abated through carbon management measures, 
which accounts for 4 per cent of the overall emission 
reduction. The use of RE power abates 49 per cent of 
emissions, corresponding to 38 MtCO2 of total emissions 
from the industry. However, since 30 per cent of the 
total electricity demand is still supplied by the CPP, the 
emissions due to coal combustion are mitigated through 
carbon management, contributing to 21 per cent of the 
total emission abatement.

5.2 MAC curves for the aluminium 
industry

The MAC curve for the aluminium industry is shown 
in Figure 11. Energy efficiency in alumina refining, 
aluminium smelting, and WHR through electrolysis 
off-gas are effective measures with negative MACs. All 
other carbon abatement measures have positive MACs, 
meaning that there is a net cost incurred by facilities 
deploying these measures. The shift from coal-based CPPs 
to renewable power has the highest potential for carbon 
mitigation but also has a substantial cost associated 
with it. The switch to NG has one of the highest MACs 
at USD 215/tCO2, followed by CCU and carbon offset. In 
this analysis, the cost of NG was taken to be USD 11.3 per 
gigajoule, while the cost of coal, the fuel it is replacing, 
is much lower, at USD 3 per gigajoule. An alternative 

https://www.keralaenergy.gov.in/files/Resources/Aluminium_Sector_2018.pdf
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Figure 11 Cumulative MAC curve for the aluminium industry

Source: Authors’ analysis 

scenario with an increased cost of coal is considered in 
the sensitivity analysis.

The MAC curve also highlights the fact that CCUS is an 
essential component of aluminium decarbonisation. 
Amongst the three techniques considered, carbon offset 
through afforestation is the most expensive while having 
the least impact and must therefore be implemented after 
exhausting all the other carbon mitigation measures 

discussed. On the other hand, CCS and CCU have a 
greater impact while also costing less in comparison. In 
addition, even though the MAC curve highlights the fact 
that the abatement cost for switching to RE is almost 
similar to that of CCS, a suitable CO2 transportation and 
sequestration system still needs to be established, with 
the identification of geological reservoirs. This may take 
a minimum of two decades for even the most promising 
reservoirs (Bakshi, Mallya, and Yadav 2023).
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6. Investment sizing for 
a net-zero aluminium 
industry

6.1 Alumina refining

Figure 12(a) schematically represents the CAPEX 
requirement to abate emissions in the alumina refining 
and aluminium smelting industry. The CAPEX for energy 
efficiency for alumina refining is INR 5,949 crore (USD 
793 million), while the CAPEXs required to abate 2.28 
MTPA of CO2 through CCS and 2.28 MTPA of CO2 with 
CCU are INR 4,713 crore (USD 628 million) and INR 5,839 
crore (USD 778 million), respectively. It should be noted 
that the CAPEXs for energy efficiency technologies for 
alumina refining were estimated using the weighted 
average MAC of all energy efficiency technologies studied 
for the decarbonisation of the cement and steel industries 
(Elango et al. 2023; Nitturu et al. 2023).

6.2 Aluminium smelting

Figure 12(b) also shows the CAPEXs required for achieving 
net zero for aluminium production. Decarbonising the 
smelting process would require a CAPEX of INR 2.01 
lakh crore (∼USD 27 billion), of which captive RTC RE 

with installations with 100 GWh of banking alone would 
require INR 1.18 lakh crore (USD 16 billion). We can see 
that deploying inert anodes (including a captive anode 
manufacturing unit) across all smelting facilities in the 
country would require INR 13,284 crore (USD 1.7 billion). 
In comparison, WHR and cell operation optimisation and 
other EE measures cumulatively require INR 13,266 crore 
(USD 1.76 billion).

The CAPEX for CCS includes the cost of a capture plant 
and the cost of building dedicated pipelines to the nearest 
trunk pipeline that transports CO2 (alumina refineries 
and smelters) to storage locations. In the case of CCU, 
the CAPEX includes the cost of setting up CO2 capture 
plants, a methanol conversion facility, for example, 
and a hydrogen production unit that provides a steady 
stream of hydrogen for methanol production. The CAPEXs 
for CCS and CCU are estimated at INR 25,441 crore 
(USD 3.3 billion) and INR 31,523 crore (USD 4.2 billion), 
respectively.

Figure 13 shows the net increase in operating costs in 
a net-zero scenario for both alumina refineries and 
aluminium smelters. In order to consume 32,840 GWh of 
RE power, the manufacturing entities have to bear a cost 
of INR 12,413 crore (USD 1.6 billion), which arises from the 
open access charges levied on the RE power wheeled from 
points of generation to the smelting plants. Similarly, the 

Figure 12 CAPEX requirement for CCUS and RE is the highest to produce net-zero aluminium
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switch to alternative fuels such as biomass (0.9 MTPA) 
and NG (2.9 bcm) would require additional expenses of 
INR 262 crore (USD 34 million) and INR 9009 crore (USD 
1.2 billion), respectively (at a biomass cost of USD 4.7 
per GJ and NG cost of USD 11.3 per GJ). The deployment 
of CCS and CCU also includes the cost of transporting 
CO2 through pipelines and other auxiliary operating 
costs associated with power consumption and so on. 
(Mukherjee and Chatterjee 2022; Srinivasan et al. 2021). 
Abatement of 8.77 MtCO2 through CCS results in an OPEX 
of INR 2,346 crore (USD 314 million), while the OPEX for 
abating the same amount of CO2 through CCU is INR 2,019 
crore (USD 270 million). In total, in a net-zero scenario, 
operating costs would increase by INR 26049 crore (USD 
3.5 Billion).

6.3 Effect of decarbonisation on the cost 
of producing aluminium

The adoption of carbon mitigation technologies directly 
affects the cost of producing aluminium due to the 
requirement of additional CAPEX and OPEX. This section 
highlights this increase considering a base price of INR 
2,39,500 per tonne of aluminium (NALCO 2023). Figure 
14a shows the break-up of the cost incurred in the 

production of aluminium. Thirty-four per cent of the cost 
of aluminium per tonne (INR 81,430 per tonne) is from 
electricity consumption during the smelting process; 23 
per cent (INR 55,085 per tonne) is from the production of 
alumina; and 20 per cent (INR 47,900 per tonne) consists 
of the cost of other raw materials.

Figure 14b shows the price increase trajectory for net-
zero aluminium. According to our analysis, net-zero 
aluminium is nearly 61 per cent more expensive than 
conventional aluminium. However, a 1.2 per cent decrease 
in production costs can be achieved by adopting alumina 
EE, aluminium EE and electrolysis off-gas WHR. An 
emission intensity of 16.13 tCO2 per tonne (23 per cent 
reduction) can be achieved by further using alternative 
fuels like biomass in alumina refining and retrofitting 
with inert anodes in aluminium smelting resulting in 
a cost increase of less than one per cent. However, for 
further decarbonisation, adopting RE power would result 
in a cost increase of 18 per cent and net zero aluminium 
would cost 61 per cent more than the base price. 
Alternatively, in a scenario where the switch to RE power 
does not happen and CCS is available at USD 50 per tCO2, 
then net-zero aluminium would cost 21 per cent higher 
than the base price (represented as a dotted line). 

Figure 13 Net-zero aluminium manufacturing will incur significant operating costs
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https://nalcoindia.com/wp-content/uploads/2023/01/Ingot-18-01-2023.pdf
https://nalcoindia.com/wp-content/uploads/2023/01/Ingot-18-01-2023.pdf
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7. Sensitivity analysis
In the base case, we considered pre-pandemic energy 
prices to eliminate the price distortions that occurred 
during the pandemic. However, the cost of coal and NG 
increased significantly in FY 2022–23 due to increased 
demand after the pandemic and changing geopolitical 
situations. The sensitivity analysis captures the impact 
of the higher prices of fossil fuels on the MAC curve. The 
cost of coal increased to INR 8,000 per tonne, the cost of 
captive power increased to INR 9 per kWh, and the cost 

Figure 15 The abatement cost of fuel switch to NG is the highest at a NG price of USD 22 per MMBtu

Source: Authors’ analysis

4/24/24, 12:30 PM Figure 15.svg

file:///G:/My Drive/CEEW/1. Projects/6. MAC Curve/Aluminium MAC/New file to KJ with updated fonts/Figure 15.svg 1/1

of NG doubled to USD 22 per million British thermal units 
(MMBtu). Figure 15 reflects the change in the MAC curve 
as a result of this increase in fuel prices. Compared to the 
base case, the abatement cost of fuel switching to NG is 
the highest. Additionally, due to the increase in the cost of 
coal, the cost of abatement for fuel switching to biomass 
was reduced. Most importantly, the abatement cost for RE 
power is negative, meaning there is a net financial gain by 
transitioning to RE power from coal based captive power 
plants.
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8. Policy 
recommendations and 
conclusions

Our study concludes that decarbonising aluminium 
production, unlike cement and steel, cannot be 
achieved with a reduction in the price of aluminium. 
As shown in Figure 15, energy efficiency, which is easily 
achievable, would result in a price increase of 1.5 per 
cent and reduce emissions from 20.88 to 16.39 tCO2 per 
tonne of aluminium. The switch from CPP to RE would 
steeply reduce the emission intensity of aluminium from 
15.28 to 4.92 tCO2 per tonne of aluminium but will also 
increase the cost of aluminium. In order to manufacture 
net-zero aluminium while still maintaining economic 
viability, certain policy interventions are key. These 
recommendations are described below.

• Incentivise RE as it will play a pivotal role 
in decarbonisation: As per our estimation, 
aluminium plants need 3.94 GW of RTC RE to meet 
their power demand even after the adoption of all 
energy efficiency technologies. The RTC RE project 
comprises both wind and solar power capacities 
(oversized to account for variabilities). A major share 
of aluminium smelting plants is in states that do not 
have optimal wind power potential. Therefore, state 
governments should support the decarbonisation of 
aluminium industries by waiving or reducing open-
access charges for renewable power. They should 
also prioritise giving right of way to the industry for 
setting up their own evacuation infrastructure for 
transmitting renewable power.

• Develop a robust MRV framework to estimate 
GHG emissions at process, equipment, and plant 
levels: The Ministry of Mines should prioritise a 
robust MRV framework for emissions monitoring to 
support the decarbonisation of the aluminium sector. 
The advent of carbon pricing makes this critical. 
The challenges related to MRV for the aluminium 
industry will gain more significance since it is an 
export commodity and may have to comply with 
mechanisms such as the European Union Carbon 
Border Adjustment Mechanism.

• Develop a CCS ecosystem in India for deep 
decarbonisation: The study shows that about 
eight million tonnes of CO₂ have to be abated in 
the aluminium industry through the CCS pathway. 
Therefore, infrastructure and technologies related to 
CCS need to be actively developed and deployed, and 
the Government of India should develop a policy that 
will eventually lead to the development of such an 
ecosystem.

• Formulate favourable policies to build a CCU 
ecosystem in the country: CCU will be critical for 
the aluminium industry to achieve net zero. However, 
CCU applications require green hydrogen, and their 
relative economic viability with CCS technology 
needs to be assessed. Therefore, the next phase of the 
NGHM should focus on creating an R&D ecosystem 
for CCU in India to evaluate its feasibility.

•  Build an R&D ecosystem for the aluminium 
industry: There is a critical need for data and 
evidence generation on decarbonisation measures 
in the aluminium industry, especially with regard 
to energy efficiency measures such as inert anodes 
for aluminium smelters. A robust R&D ecosystem, 
including pilot projects for CCUS across all 
geographies (depleted oil and gas wells, saline and 
basalt rock formations) and utilisation pathways, 
must be established.
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Acronyms
bcm billion cubic metres
BEE Bureau of Energy Efficiency
CAPEX capital expenditure
CCS carbon capture and sequestration
CPP captive power plant
CCU carbon capture and utilisation
CCUS carbon capture, utilisation, and storage
EE energy efficiency
MAC marginal abatement cost
MMBtu million British thermal units
MtCO₂ million tonnes of CO₂
MTPA million tonnes per annum
NG natural gas
OPEX operating expenditure
RE renewable energy
RTC round-the-clock
TRL technology readiness level
WHR waste heat recovery
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On account of its high melting point, a large amount of electrical 
energy is required to reduce alumina to aluminum.
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