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We estimate that the Indian fertiliser sector 
emits ~0.58 tonnes of CO2 per tonne of fertiliser 
produced. The sector has a total emissions 
footprint of ~25 million tCO2 for the year 2022-23.
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Executive summary

India is the second-largest fertiliser producer in the 
world, accounting for ~20 per cent of global production 

(Fertilizer Association of India 2023). Fertilisers, although 
essential for improving crop yield (Singh, et al. 2019), 
are significant source of greenhouse gas emissions due 
to energy-intensive production processes and extensive 
fossil fuel use, particularly natural gas. The Indian 
fertiliser industry contributes ~25 million tonnes of CO2 
annually, which is ~1 per cent of India‘s total greenhouse 
gas emissions of ~3 giga tonnes (GHG platform India n.d.). 
Decarbonising the fertiliser sector can have two significant 
benefits: first, it can reduce fossil fuel use, which is 
essential to achieving net-zero targets. Second, it can result 
in significant import savings of approximately ~USD 10 
billion, since ~60 per cent of the natural gas consumed in 
this sector is imported (Jain 2022). Therefore, in this study, 
we aim to provide options for the fertiliser industry to 
decarbonise and strategically achieve its net-zero targets.

A. Key insights

The Indian fertiliser industry emits 0.58 
tonnes of CO2 per tonne of fertiliser

1  Ammonia is the main raw material for urea and other fertiliser products such as DAP and OCF.

2  Grey ammonia is produced from fossil-based sources, while green ammonia is produced using renewable energy sources.

We estimate that the Indian fertiliser sector emits 
~0.58 tCO2 per tonne of fertiliser produced. The sector 
has a total emissions footprint of ~25 million tonnes 
of CO2 (MtCO2). While 85 per cent of the emission is 
attributed to the use of natural gas, which is used 
as a fuel and feedstock in the production process, 
the remaining 15 per cent is from electricity use. Urea 
production accounts for about 65 per cent of the total 
emissions from the sector, and the remaining is from the 
production of di-ammonium phosphate (DAP) and other 
complex fertilisers (OCF).

Green ammonia can make the Indian 
fertiliser industry net carbon-negative 

Deploying energy efficiency (EE) measures can reduce 
the fertiliser industry’s emissions intensity by ∼10 per 
cent – from 0.58 t-CO2/t-fertiliser to 0.52 t-CO2/t-fertiliser 
(Figure ES1 shows the consolidated emissions mitigation 
trajectory of the Indian fertiliser industry). Because 
fertiliser production does not require much electricity, 
switching to renewable power would result in a mere 2 per 
cent reduction in emissions. Since ammonia production1 
accounts for ∼95 per cent of the emissions in this sector, 
switching from grey to green ammonia2 can result in a 
151 per cent emissions reduction, thus resulting in net-
negative emissions for the sector. The negative emissions 
can be attributed to the need to source CO2 from

Figure ES1 Emission mitigation pathways for the fertiliser industry
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other emitters to produce urea. According to our 
estimate, the Indian fertiliser sector can consume 
∼20 MTPA of green ammonia. As a last resort, carbon 
management options such as carbon capture and 
sequestration (CCS), carbon capture and utilisation 
(CCU), and afforestation may be adopted.

Figure ES2 illustrates the marginal abatement cost 
(MAC) curve for the fertiliser industry. It shows that 
cost-saving EE technologies have the lowest mitigation 
cost of USD -63.5 per tonne. It is also the only cost-saving 
option in the MAC curve. However, expense-driven EE 
technologies have a MAC cost of USD 49.6 per tonne. 
Yet, taken together, EE technologies can help abate ∼2.3 
MtCO2. Renewable energy (RE) is the next mitigation 
option worth considering, with a MAC of ∼USD 42 per 
tonne, especially for DAP and OCF production. However, 

since it can abate only 0.4 MtCO2, it is unlikely to play a 
significant role in decarbonising the fertiliser industry.

With a MAC of ∼USD 160 per tonne for DAP and OCF 
each and ∼USD 270 per tonne for urea, green ammonia 
can abate 2 MtCO2 from DAP, 5.1 MtCO2 from OCF, and 
30 MtCO2 from urea production. The MAC for the use of 
green ammonia in urea production is higher than those 
for DAP and OCF because the urea industry receives 
subsidised domestic gas priced at USD 7.5 per MMBtu, 
and we assume that imported natural gas priced at USD 
10.1 per MMBtu is used for DAP and OCF production. The 
total emissions abated by using green ammonia alone in 
the urea sector stands at 30 MtCO2, which is more than 
the current level of total emissions from the urea sector, 
which stands at 16.2 MtCO2, as urea production needs 
CO2, which has to be sourced from other sectors, making 
the fertiliser industry a net-negative industry. 

Figure ES2 Cumulative MAC for the fertiliser sector

Source: Authors’ analysis
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With the implementation of carbon management 
measures, the MAC of CCS for DAP and OCF is estimated to 
be USD 90 per tonne, which has very limited potential to 
abate 0.006 and 0.1 MtCO2 for DAP and OCF, respectively. 
Urea plants do not need any CCS, as the entire CO2 
abatement can happen with EE and green ammonia. It 
should be noted that while CCS has a lower abatement cost 
than green ammonia, the MAC curve reflects emissions 
mitigation through the use of green ammonia primarily 
because the cost of green ammonia is expected to decrease 
in the future and support India’s ambitions of becoming 
Aatma Nirbhar (self-reliance). The MAC curve highlights 
that in the absence of net-zero fuels and direct RE-based 
electrification of process heating applications, carbon 
capture, utilisation, and storage (CCUS) is essential for DAP 
and OCF decarbonisation, even after using green ammonia. 
Amongst the techniques considered, carbon offset through 
afforestation has not been assigned any number due to 
significant uncertainties in its mitigation costs.

B. Key recommendations
• Incentivise the adoption of the best-available EE 

technologies through the Indian Carbon Market. 
The Indian Carbon Market (ICM) and Perform, 
Achieve, and Trade (PAT) schemes can play a pivotal 
role in promoting the uptake of EE technologies 
(Bureau of Energy Efficiency n.d.). EE measures can 
potentially mitigate 10 per cent of emissions from the 
fertiliser industry and improve operational efficiency. 
Hence, EE technologies should be encouraged.

• Incentivise RE uptake in the fertiliser sector. 
The Government of India should promote the 
adoption of RE by providing financial and policy 
support, such as waivers or reductions in open 
access charges. This approach would facilitate the 
industry’s transition to cleaner energy sources.

• Blend green ammonia in the fertiliser industry. 
Promoting green ammonia can have transformative 
effects as ∼35 MtCO2 can be abated. Notwithstanding 
the economic feasibility challenges, a gradual and 
phased approach to adopt green ammonia blending 
can emerge as a viable solution. 

• Promote the use of green ammonia for the 
production of green urea ammonium nitrate. 
Urea ammonium nitrate (UAN) is a popular liquid 
fertiliser that is widely used in North America and 
Europe. It is produced by blending ammonium nitrate 
(AN) with urea. AN produced from green ammonia can 
be blended with urea to produce green UAN.

• Co-locate bioethanol and urea plants.  
CO2, available from bioethanol as a by-product, can be 
used to produce urea. To achieve the revised target of 
blending 20 per cent of bioethanol in petrol by 2025, 
new bioethanol plants need to be established, and 
these new plants can be located near urea plants. 

1. Introduction
Fertilisers play a crucial role in the Indian 
agricultural sector and are essential for ensuring 
food security. With the growth of the Indian 
population, the demand for agricultural products; 
therefore, along with selecting the right food crops, 
the fertiliser sector has been pivotal in India’s 
drive to achieve food security. The Indian fertiliser 
industry dates back to 1943, when Fertilisers and 
Chemicals Travancore Limited (FACT) incorporated 
the first large-scale fertiliser plant in Udyogamandal, 
Kerala (Department of Fertilizer n.d.). Enabled by the 
Green Revolution of the 1960s, India witnessed rapid 
growth in agricultural production and productivity, 
fuelled by the increased accessibility of affordable 
fertilisers to farmers (Chand and Singh 2023). 

Over the years, many new fertiliser plants were 
established to meet the continuously growing 
domestic demand. Six public-sector undertakings 
(PSUs), two public–private partnerships, and several 
private players operate over 150 plants across India, 
with an annual production capacity of 60 million 
tonnes per annum (MTPA) (Fertilizer Association 
of India 2023). Fertiliser consumption in India has 
accelerated since the Green Revolution, both in 
terms of per hectare agricultural area and per capita 
consumption, from ~2 kg per hectare in the 1960s to 
~150 kg per hectare in 2021–22 (Fertilizer Association 
of India 2023).

With a total production of ∼50 million tonnes (MT), India’s 
total fertiliser production stood at ∼20 per cent of global 
fertiliser production in 2022–23. The total greenhouse gas 
emissions produced by India’s chemicals and fertilisers 
industry are about 75 MTPA, which constitutes around 
12 per cent of India’s industrial energy use emissions 
(Biswas, Ganesan and Ghosh 2019).

Green ammonia use in the urea sector 
alone can abate ~30MtCO2.
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1.1 The fertiliser industry at 
a glance
Fertilisers are chemical products added as external 
agents to address nutrient deficiencies in the soil by 
providing (a) primary nutrients (nitrogen, phosphorus, 
and potassium), (b) secondary nutrients, and (c) 
various micronutrients essential for plant growth. 
Fertilisers can be categorised into (a) straight fertilisers 
(nitrogenous, phosphatic, potassic) and (b) complex 
fertilisers – a combination of nitrogen and phosphorus 
(NP) or nitrogen, phosphorus, and potassium (NPK). 
The Indian fertiliser product mix mainly includes 
urea, di-ammonium phosphate (DAP), other complex 
fertilisers (OCF), ammonium sulphate (AS), and single 
super phosphate (SSP). 

In 2022–23, the global fertiliser production stood at ~218 
MT, of which urea alone comprised ~184 MT (Fertilizer 
Association of India 2023). China and India are the two 
largest urea producers, accounting for over 55 MTPA 
and 28.5 MTPA, respectively; together, they contribute 
approximately 40 per cent of global urea production 
(International Fertilizer Association 2022). While China 
is self-sufficient in urea production, India is the second-
largest importer after Brazil (Yara 2022), importing 10 MT 
of urea (Ministry of Commerce and Industry n.d.)

The situation is similar in DAP production, where India 
contributes ∼13 per cent (4.35 MT) of the world’s 33.5 MT 
of DAP production (Department of Fertilizer 2023). This 
contribution could have been much more significant, 
but due to the non-availability of phosphate rock, an 
essential raw material in the DAP production process, 
India cannot utilise nearly half of its total DAP production 
capacity of 7.7 MTPA, as it depends on imports for raw 
materials (ammonia, phosphoric acid/rock phosphate, 
and sulphur). In addition, this domestic DAP production 
is highly import-dependent since 90 per cent of the 
phosphate rocks are imported (PIB 2021), and nearly 
all (80–90 per cent) non-urea fertiliser plants depend 
on imported ammonia; only a few (10–20 per cent) use 
natural gas. Therefore, to meet its domestic demand, 
India further imports 6.7 MT of DAP.

Production of OCFs also involves similar challenges; of 
the 15.6 MT of OCFs consumed in India in 2022–23, 5.6 
MT (approximately 35 per cent) were imported. This is 
despite India over utilising its OCF production capacity 
of 8.72 MT with an annual production of 10 MT. 

Table 1 highlights the status of India’s fertiliser 
production capacity, demand, and imports. The data 
clearly show that production at urea and OCF plants 
exceeds the 100 per cent installed capacity to limit the 
energy consumption and to meet the demand.

Table 1 Finished fertiliser products and production in India for 2022–23

Finished fertiliser Product Production (MT) Production 
Share (%)

Installed capacity 
(MT)

Imports (MT) Consumption (MT)

Urea 28.50 57.7 28.1 10.16 35.7

DAP (di-ammonium phosphate) 4.35 8.8 7.7 6.68 10.4

OCF (NP/NPK) 10.03 20.3 8.72 5.6 15.6

AS (ammonium sulphate) 0.86 1.7 0.763 - 0.76

SSP (single super Phosphate) 5.65 11.4 12.32 - 5.02

Total fertiliser 49.38 100 57.6 22.4 67.6

Source: Department of Fertilizer. 2023. Annual Report. Government of India, Fertilizer Association of India. 2023. Fertilizer statistics. FAI.
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Figure 1 Urea, DAP, and OCFs account for 85% of the total fertiliser production in India
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Source: Authors’ compilation

Figure 1 shows the components used in the manufacture 
of the different types of fertilisers produced in India. Urea, 
a nitrogen-rich fertiliser, uses ammonia (NH3) and carbon 
dioxide (CO2), which are produced using natural gas as 
feedstock. Similarly, DAP, a phosphate-rich fertiliser, is 
produced using ammonia and phosphoric acid, and OCFs 
are produced using ammonia, phosphoric acid, and MOP 
(muriate of potash) in different ratios depending on the 
grade of NPK to be produced. 

Apart from urea, DAP, and OCFs, other fertiliser 
products are used in India, such as ammonium 
sulphate (produced by steel plants as a by-product 
of coke oven gas) and single super phosphate 
(produced by treating finely ground rock phosphate 
with sulphuric acid (H2SO4). The emissions from these 
processes are negligible compared to those from urea, 
DAP, and OCF production. In addition, ammonium 
sulphate accounts for less than 2 per cent of the total 
fertiliser output. Single super phosphate, accounting 
for ∼10 per cent of the total production (Department of 
Fertilizer 2023) has a specific energy consumption (SEC) 
of ∼0.12 GCal/t-SSP (Paradeep Phosphates Limited 
2017), which is much lower than that of urea at 5.65 
GCal/t-urea. Given its significantly lower emissions, it 
has not been included in our assessment. Therefore, 
for our analysis in this report, we considered only urea, 

DAP, and OCFs, which account for ∼85 per cent of the 
total fertiliser production in India.

1.2 Energy consumption in the 
fertiliser industry
The production of fertilisers, particularly urea, 
is an energy-intensive process that relies on the 
use of fossil fuels both as fuel and feedstock. Urea 
production is highly thermal energy intensive because 
the reactants need to be brought to the required 
temperature and pressure. It also requires fuel to 
generate steam and power, which is needed during 
the production process. Electricity is produced 
in-house using natural gas, fuel oil, or coal or is 
sourced from the grid. In the case of urea production, 
natural gas has taken over as the primary feedstock in 
fertiliser plants, replacing fuel oil and naphtha. About 
70 per cent of natural gas is used as a process gas, 
and the balance is used as fuel gas (Liu, Elgowainy 
and Wang 2020). As per the New Urea Policy, 2015, ~85 
per cent of Indian fertiliser plants were dependent on 
natural gas. A recent assessment shows that all urea 
plants now use natural gas as feedstock (Department 
of Fertilizer n.d.), which aligns with the Indian 
government’s push to reduce energy consumption and 
lower emissions in the fertiliser industry.



Evaluating Net-zero for the Indian Fertiliser Industry Marginal Abatement Cost Curves of Carbon Mitigation Technologies6

Figure 2 shows the production and installed capacity of 
urea, DAP, and OCF plants, along with their respective 
plant locations. Most urea plants in India have an SEC of 
5–8 GCal/t-urea and an overall weighted average SEC of 
5.65 GCal/t-urea.

The New Urea Policy, 2015, classified 13 urea units 
(having preset energy norms between 5.0 and 6.0 GCal/t-
urea) under Group I, 4 units (with preset energy norms 
between 6.0 and 7.0 GCal/t-urea) under Group II, and 8 
units (with preset energy norms more than 7.0 GCal/t-
urea) under Group III. Groups I, II, and III are mandated 
to achieve the target energy norm (TEN) of 5.5, 6.2, and 
6.5 GCal/t-urea, respectively. Three naphtha-based units, 
on converting it to natural gas, are required to achieve a 
TEN of 6.5 GCal/t-urea. The six recently commissioned, 
large-capacity (3850 tonnes per day), state-of-the-art 
urea plants are designed with an SEC of 5.0–4.9 GCal/t-
urea. Further, the BVFCL plants that are high in energy 
consumption are proposed to be closed in order to 
install new units that will be highly energy efficient.

The urea units that were able to invest in energy-saving 
schemes have achieved their TEN; however, it would not 
be economical for the vintage units (pre-1982) and units 
with poor financials to invest in energy-saving schemes.

According to the Fertiliser Association of India, energy 
accounts for 90 per cent of the variable cost in producing 
ammonia, and ammonia accounts for 80 per cent of 
energy consumption in the production of urea (Nand 
and Goswami 2021). Energy consumption norms are a 
major parameter used in calculating the reimbursement 

of costs in the government’s urea pricing and subsidy 
policy, and these norms have been periodically revised 
downwards. Consequently, the weighted average energy 
consumption in urea plants has reduced from 8.87 
GCal/t-urea in 1987–88 to 5.65 GCal/t-urea in 2022-23. 
This may further go down following investments in 
energy-saving schemes and the commissioning of new 
large-capacity ammonia/urea plants. For instance, the 
IFFCO Aonla II unit in Uttar Pradesh has the lowest SEC 
of 5.03 GCal/t-urea production in India (excluding newly 
commissioned revival projects).

Studies have shown that the best plants globally have 
achieved an SEC of 4.8 GCal/t-urea (Casale 2024). 
However, in the Indian context, due to the presence of 
a large number of vintage plants, further reduction in 
the SEC would be difficult to achieve using conventional 
energy-saving schemes.

In our study, the SEC values of DAP and OCF were 
estimated as 2.15 GCal/t-DAP and 2.72 GCal/t-OCF, 
respectively, of which ∼90 per cent is the energy 
associated with producing the ammonia used in the 
process. Industry experts indicate that 80–90 per cent 
of the ammonia used in DAP and OCF production is 
imported. In 2022–23, India imported 2.3 MT of ammonia, 
where DAP and OCF units consumed 3.4 MT of ammonia 
for producing fertilisers (Ministry of Commerce and 
Industry n.d.). Nonetheless, to calculate the SEC values 
and baseline emissions from DAP and OCF production, 
the emissions from the use of imported ammonia have 
been attributed to the plant for simplicity of assessment.

Figure 2 Specific energy consumption and geographical location of urea and DAP plants
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Figure 3 General urea production process and mass balance
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1.3 Production processes
Nitrogenous fertilisers such as urea, NP, and NPK require 
ammonia as a key raw material, and the production 
process is highly energy-intensive. The production of 
ammonia involves reactions that are exothermic and 
endothermic. This offers an opportunity for the recovery 
of waste heat and its utilisation in the process itself. 
Ammonia plants are normally located in complexes 
with urea manufacturing facilities. This is because all 
the major raw materials required for the production of 
urea (ammonia, steam, and CO2) are obtained from the 
operation of the ammonia plant. In this section, we 
summarise the high-level manufacturing processes used 
for the three fertilisers under consideration to estimate 
the emissions from their respective manufacturing 
processes and develop the marginal abatement cost 
(MAC) curve.

• Urea: Urea production involves two steps: the 
production of ammonia and then its reaction with 
carbon dioxide (CO2) to produce urea. Ammonia is 

produced predominantly from natural gas using 
the Haber–Bosch process, where nitrogen (N2) and 
hydrogen (H2) are reacted at a high temperature and 
pressure in the presence of a catalyst to produce 
ammonia. Hydrogen is obtained during the steam 
methane reforming of natural gas, and nitrogen is 
introduced as air during the secondary reforming 
process (Topsoe n.d.). During this process, CO2 is 
produced as a by-product, extracted from the process 
gas, and used in the production of urea. Urea is 
produced using the Bosch–Meiser process, where 
ammonia and CO2 are reacted at a high temperature 
and pressure to produce ammonium carbamate 
(NH2CO2NH4), which is dehydrated and cooled in 
a prilling tower to obtain granulated/prilled urea 
(NH2CONH2). Figure 3 summarises the steps for 
producing urea and also indicates the material 
balance. The urea formation reaction is as follows:
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Figure 4 DAP production process with the material balance
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• DAP: Di-ammonium phosphate (18:46:0) is a 
fertiliser consisting of 18 per cent nitrogen nutrient 
and 46 per cent phosphate (P2O5) nutrient. DAP 
production takes place in two steps. In the first 
step, phosphate rock, rich in phosphorus pentoxide 
(P2O5), reacts with sulphuric acid (H2SO4) to produce 
phosphoric acid (H3PO4). In the next step, the 
phosphoric acid is mixed with ammonia in a reactor 
chamber at ∼110°C to produce DAP. Ammonia for 
DAP is normally obtained from external sources, as 
it is not economical to produce ammonia in-house. 
Figure 4 highlights the process and material flow 
during the DAP production process. DAP formation is 
given by the following reaction equation:

H3PO4 + 2NH3 → (NH4)2HPO4

• OCFs: The manufacturing process of OCFs is 
similar to that of DAP, with the only difference 

being the addition of potash/other nutrients into 
the ammoniator/granulator. The process energy 
consumed is also similar to that of DAP, but the 
quantity of ammonia required in the process varies 
depending on the grade of fertiliser being prepared. 
OCFs are essentially a mixture of ammonia, 
phosphate rock, and potash in specific ratios that 
can provide the desired amount of nitrogen (N), 
phosphorus (P), and potassium (K). NPK are often 
mixed with micronutrients to meet soil nutrient 
deficiencies. Additionally, coatings and fillers such 
as silica, clay, limestone, and sulphur are added to 
improve the physical characteristics of the fertiliser, 
prevent caking, and provide additional nutrients. 
Some of the essential NPK-based fertilisers 
produced in India include MAP (monoammonium 
phosphate), NPK 12:32:16, NPK 16:20:0, and NPK 
16:16:16. Figure 5 represents the conventional 
production process for OCFs.
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Figure  5 OCFs are a mixture of NPK blends, with 20+ types of grades being produced in India
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2. Baseline emissions and 
energy requirements
Natural gas used as feedstock and as a thermal energy 
source is the primary source of emissions in fertiliser 
plants. Electrical energy usage also contributes to a 
small share of the emissions. We use these thermal and 
electrical energy consumption data to create the baseline 
for emissions in the fertiliser manufacturing process. 
FY 2022–23 was selected to estimate the emissions, 
representing the latest available published data. The 
analysis included 36 ammonia/urea units in the country, 
including four newly commissioned revival projects.

In this study, we considered only scope 1 and scope 2 
emissions for fertiliser production. Figure 6 depicts the 
SEC (thermal and electrical) and emission intensity 
during urea production. For simplicity, it is assumed 
that all the thermal energy consumed is obtained from 
natural gas use. In contrast, electricity consumed in 

the production process is sourced from a mix of coal-
based captive power plants (CCP), the electrical grid, 
and renewable power in the ratio of 62:33:5 (Central 
Electricity Authority 2020). As highlighted in Figure 6, 
1.20 tonnes of CO2 is emitted during the Haber–Bosch 
process for each tonne of urea produced. A significant 
portion of this CO2 is used in the Bosch–Meiser process 
for producing urea. Although 0.73 t-CO2/t-urea is 
required as per stoichiometry, we assume that 0.75 t-CO2/
t-urea is internally consumed (considering the process 
losses) for producing urea. Additionally, thermal energy 
is also utilised to maintain the reaction temperature 
and pressure in this step, which results in 0.12 t-CO2 
of emissions. The emissions from power consumption 
are 0.08 t-CO2/t-urea. Thus, the resulting net emissions 
from urea production is 0.57 t-CO2/t-urea. For the 28.5 
MTPA of urea produced annually, the total emissions 
are estimated to be approximately 16.2 MtCO2 (∼11 MtCO2 
from natural gas used as feedstock and the rest from fuel 
used to generate thermal energy).
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Figure 6 Baseline SEC values and emission intensities for urea plants in India
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Figure 7 Baseline SEC values and emission intensities for DAP plants
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Figure 8 Baseline SEC values and emission intensities for OCF plants
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Figure 7 shows the SEC and emissions calculated for 
DAP production. Our assessment indicated that DAP 
production has an SEC of 2.15 GCal/t-DAP, resulting in 
baseline emissions of 0.57 t-CO2/t-DAP. Approximately 
80 per cent of these emissions are associated with 
thermal energy use, and ∼85 per cent, with ammonia 
production. The comprehensive emissions from the total 
DAP production of 4.35 MT in India are estimated to be 
approximately 2.5 MtCO2 annually.

There are no official or peer-reviewed emissions data 
available for OCF production. Industry experts suggest 

that the OCF production process is similar to that of DAP. 
Hence, the emissions and SEC for OCFs were estimated 
assuming a similar production process to that of DAP 
with the additional assumption that OCFs require 
a higher amount of ammonia than DAP since there 
are various grades of ammonia-rich OCFs. With this 
assumption, the baseline emission was estimated to be 
0.60 t-CO2/t-OCF. Figure 8 summarises the SEC and total 
emissions of 6.1 MtCO2 from OCF production in India. 
Annexure I summarise the parameters used for the SEC 
and emission calculations. 
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3. MAC estimation methodology
Marginal abatement cost (MAC) is a concept used 
in environmental economics and climate policy to 
measure the cost of reducing each additional unit of 
CO2 emission. It represents the cost of implementing 
a specific emission reduction measure or technology. 
As shown in Figure 10, our analysis considers various 
technologies to calculate the MACs, and they can be 
categorised into the following four groups: 

• Energy efficiency: This involves reducing energy 
consumption while simultaneously enhancing the 
output or performance of the processes, thus leading 
to lower energy costs.

• Alternative energy source: Renewable sources of 
electricity can be used to meet energy demands and 
offset fossil captive or grid power consumption.

• Alternative fuel: This decarbonisation lever involves 
switching to green ammonia instead of grey ammonia.

• Carbon management: It involves mitigating 
emissions through carbon capture and storage (CCS), 
carbon capture and utilisation (CCU), and carbon 
offset mechanisms such as afforestation.

These four categories are relevant to the fertiliser sector, 
encompassing improvements in the ammonia, urea, and 
DAP and OCF plants. Table 2 shows various options that 
can be implemented to decarbonise the fertiliser sector.

Figure 10 Carbon abatement options for the fertiliser sector
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Box 1 Utility of MAC curves

The MAC curves are generated by plotting the cost of CO2 mitigation (USD/t-CO2) for a specific carbon mitigation technology 
on the y-axis against that technology’s total mitigation potential (t-CO2) on the x-axis. Figure 9 illustrates the schematic of 
a standard MAC curve. The mitigation cost spectrum ranges from negative to positive values. A negative cost signifies a net 
economic benefit from deploying a particular technology, while a positive cost implies additional expenses incurred for the 
technology. The cumulative x-axis values denote the total CO2 emissions over a specified period.

Figure 9 Schematic of a typical MAC curve
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Table 2 Four pillars to enable net-zero carbon emission in the fertiliser sector

 Parameters Ammonia plant Urea plant DAP and OCF plant

1. Energy efficiency (reduce specific energy consumption)

(a) Through process 
adjustment

Improve waste heat recovery and 
reduce heat rejection to cooling 
water

Reduce the flow of inert 
gas in the reactor

Reduce specific ammonia 
consumption

Reduce the steam/carbon ratio Reduce steam and power 
requirements

Reduce specific power 
consumption

Maximise CO2 conversion and 
recovery to reduce the load on the 
methanator

Improve conversion of 
ammonia and CO2 in the 
reactor

-

Reduce synthesis loop pressure and  
increase conversion per pass

Maximise the use of 
steam available from the 
ammonia plant

-

Improve synthesis gas purification 
to reduce gas circulation

Maximise recovery of waste 
heat

-

Reduce make-up gas temperature 
to reduce compressor power

- -

(b) Through equipment 
revamp

Carry out retrofits in compressors 
to improve efficiency and reduce 
steam consumption

Improve conversion 
efficiency in the reactor 
through retrofits

Improve conversion efficiency of 
the reactor through retrofits

Use variable frequency drives Improve the reliability 
of plants and reduce 
breakdowns

Use variable frequency drives

Use vapour absorption refrigeration 
(VAR) to cool inlet gas to 
compressors

Switch small pumps from 
steam to power drive

Prevent equipment breakdown 
through preventive maintenance

Switch small pumps from steam to 
power drive

Upgrade CO2 and process 
air compressor

-

Use a gas turbo generator or heat 
recovery steam generator instead of 
a steam turbo generator for power 
generation

Prevent equipment 
breakdown

-

2. Alternative energy source

(a) Using renewable 
energy (RE)

Use of RE to meet the electrical 
power requirement

- Use of RE to meet the electrical 
power requirement

3. Alternative fuel

(a) Sourcing green 
ammonia 

- Source green ammonia to 
reduce the specific energy 
consumption

Substitute grey ammonia with 
green ammonia to reduce the 
specific energy consumption

4. Carbon management

(a) Sourcing CO2 from a 
bioethanol plant

Source CO2 from bioethanol plants 
instead of operating the ammonia 
plant at a load more than required 
(for integrated plants)

Source CO2 from a 
bioethanol plant

-

(b) Adopting CCS Use CCS to capture CO2 exiting from 
the furnace/reformer stack

Use CCS to capture CO2 
exiting from the urea 
reactor

Use CCS to capture CO2 exiting 
from dryer stack CPP

(c) Undertaking 
afforestation to offset 
balance CO2 emission

Consider afforestation to offset 
residual CO2 emissions

Consider afforestation 
to offset residual CO2 
emissions

Consider afforestation to offset 
residual CO2 emissions

Source: Authors’ analysis 
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The estimation of MAC for a mitigation technology 
involves three steps, as shown in Figure 11. The 
estimated abatement costs for various mitigation 
options are used to develop the MAC curves.

• Data collection: The first step involves facility-level 
data collection, which includes data on production, 
SEC, emissions, fuel use, and so on.

• Emission baseline estimation: The second step 
involves estimating the emission baseline.

• Financial calculations: In the last step, capital 
expenditure (CAPEX) and operating expenditure 
(OPEX) are calculated to estimate the cost of CO2 
mitigation technology.

4. Methodology
The MAC calculations require the costs of raw materials 
and utilities; the assumed costs are summarised in Table 
3. A detailed list of assumptions has been provided in 
Annexure I. While India imports ∼70 per cent of the 
ammonia consumed in these non-urea fertiliser units 
(Ministry of Commerce and Industry n.d.), we assume that 
the ammonia produced in India uses liquified natural 
gas (LNG) in the manufacturing process. The cost of 
LNG considered in the assessment corresponds to a grey 
ammonia cost of approximately USD 360 per tonne. The 
cost of grey ammonia in the base year of 2022–23 was USD 
939 per tonne due to geopolitical turmoil and the post-
pandemic recovery. However, we assume that the cost will 
be approximately USD 360 per tonne in the long run.

Figure 11 MAC estimation methodology
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Table 3 Major assumptions used in the study to develop the MAC curves

Assumptions Value Unit Remark/References

Cost of natural gas (urea) 7.5 USD/MMBtu Industry inputs

Cost of natural gas (DAP/OCF) 10.1 USD/MMBtu Industry inputs

Electricity cost 4.53 INR/kWh Assumption based on power mix

Cost of grey ammonia (urea) 278 USD/t Based on the natural gas price

Cost of grey ammonia (DAP/OCF) 357 USD/t Based on the natural gas price

Cost of green ammonia 700 USD/t Assumption

Transport cost of CO2 15 USD/t (Smith, et al. 2021)

CO2 capture cost 50 USD/t-CO2 (IEA 2019)

CCS cost 90 USD/t-CO2 (Nitturu, et al. 2023)

Source: Authors’ analysis 

4.1 Energy efficiency in urea 
production
The data relating to the efficacy of energy efficiency 
(EE) technologies, their CAPEX and OPEX costs, and 
their emission mitigation potentials are not available 
in the literature. However, an extensive analysis of 
EE technologies in the cement and steel industries 
revealed that the costs of CO2 mitigation with EE 
technologies are similar across hard-to-abate industries 
(Nitturu, et al. 2023, Elango, et al. 2023). Therefore, 
we assumed that installation and operations costs, 
normalised against the energy savings for urea 
production, are similar to those incurred in cement 
and steel production. Thus, the combined MAC for all 
EE measures for fertiliser production was estimated 
based on the weighted average MACs of various EE 
technologies with respect to their emissions reduction 
potential in the cement and steel industries. According 
to previous CEEW reports for the steel and cement 
industry, the MAC was calculated at USD -63.5 per 
tonne of CO2 for cost-saving EE and USD 49.6 per 
tonne of CO2 for expense-driven EE technologies. 
Subsequently, we calculated the emissions reduction 
potential of each plant for the MAC curve based 
on the difference between the plant’s own energy 
consumption and its target SEC. Based on discussions 
with industry experts, we identified 5.5 GCal/t-urea 
and 5.3 GCal/t-urea as the targeted emission intensities 
achievable with cost-saving EE and expense-driven 
EE, respectively. This approach provided a reduction 
of ∼10 per cent in energy consumption, especially 
in thermal energy, assuming the average SEC for 
urea production in India is 5.65 GCal/t-urea. We 

estimated that 4 per cent (0.02 t-CO2/t-urea) of the 
reduction in the emissions intensity of urea fertiliser 
is achieved through technologies with a negative cost 
of abatement, while the remaining 6 per cent (0.03 
t-CO2/t-urea) is achieved through EE technologies that 
have a positive abatement cost.

4.2 Alternative energy sources: 
renewable energy
Round-the-clock renewable energy (RTC RE) is considered 
to offset the coal-/gas-based captive power and grid 
electricity used in fertiliser plants. We obtained the cost 
of RTC RE based on recent tenders for grid-scale wind–
solar–battery hybrid power plants (ReNew 2021). These 
hybrid power plants, with 400 MW solar power and 900 
MW wind power capacity, coupled with 100 GWh of 
battery storage, can supply 400 MW of RTC RE. Based 
on the prices and terms of this tender, we assumed that 
RTC RE power would be available at INR 3.60 per kWh at 
the generation point, with an 80 per cent annual plant 
availability. We obtained the landed costs of RTC RE 
across various fertiliser-producing states, which include a 
base tariff of INR 3.6 per kWh, a banking charge of INR 2.2 
INR per kWh, and an open-access electricity transmission 
charge from the open-access tariff calculator developed by 
the CEEW’s Centre for Energy Finance (CEEW-CEF n.d.). 
To estimate the abatement cost of switching from CPP to 
RE, we considered the electricity tariff from the CPP to 
be INR 3.72 per kWh and an India-average grid tariff of 
INR 6.19 per kWh (Nitturu, et al. 2023). We estimated that 
approximately 280 MW of RTC RE would be needed for the 
fertiliser sectors considered in the study – namely, urea, 
DAP, and OCF.
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4.3 Alternative fuel: green 
ammonia
Since ∼80 per cent of the emissions in fertiliser production 
are associated with ammonia production, green ammonia 
is considered to be one of the primary decarbonising 
solutions. We assume a green ammonia cost of USD 700 
per tonne. If green ammonia is used, the CO2 required 
for the Bosch–Meiser process (to produce urea) must be 
sourced externally. For this purpose, we assume a CO2 
purchase cost of USD 65 per tonne, which includes the 
cost of CO2 capture of USD 50 per tonne (IEA n.d.) and 
a transportation cost of USD 15 per tonne (Smith, et al. 
2021). We estimated that the Indian fertiliser sector can 
consume ∼20 MTPA of green ammonia.

4.4 Carbon management
The deep decarbonisation of any industry usually 
necessitates the use of alternative CO2 abatement 
measures, especially CCUS. In the fertiliser industry, 
carbon management measures play a small but 
significant role, especially in DAP and OCF production. 
Using existing natural gas pipeline infrastructure 
will ensure that issues related to the right-of-way for 
transporting CO2 to storage locations can be avoided, and 
all fertiliser plants can sequester CO2. In addition, carbon 
capture has a peak efficiency of 85–90 per cent (while 

urea plants capture CO2 with ∼99 per cent efficiency). The 
remaining CO2 emissions must be mitigated using carbon 
offset mechanisms such as afforestation.

5. MAC for the fertiliser 
sector

5.1 Emission mitigation trajectory 
for the fertiliser industry
Figure 12a shows the consolidated emissions mitigation 
trajectory for the Indian fertiliser industry, where 
deploying EE measures can reduce emissions by 10 
per cent. As fertiliser production requires limited 
electricity, switching to RE measures results in a mere 2 
per cent emissions reduction. However, since ammonia 
production accounts for ∼95 per cent of the emissions, 
switching from grey to green ammonia results in a 
151 per cent emissions reduction, thus resulting in a 
net-negative fertiliser sector. The negative emissions 
can be attributed to the need to source CO2 from other 
emitters to produce urea. Carbon management options 
such as CCS, CCU, and afforestation can be adopted as 
a last resort. Figure 12b shows the individual emissions 
reduction trajectories for urea, DAP, and OCF. 

Figure 12 Emission mitigation pathways for the fertiliser industry
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b) Sector-wise emission mitigation pathway for urea, DAP, and OCF
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5.2 MAC curve for the fertiliser 
industry
Figure 13 shows the MAC curve for the fertiliser industry, 
highlighting the pathway to achieve a net-zero fertiliser 
sector. Currently, the weighted average emissions 
intensity from fertiliser production stands at 0.58 t-CO2 

per tonne with no mitigation measures in place. The 
figure shows that cost-saving EE technologies have the 
lowest mitigation cost of USD -63.5 per tonne. It is also 
the only cost-saving option in the MAC curve. Expense-
driven EE technologies have a MAC cost of USD 49.6 per 
tonne. Together, the EE technologies can help abate ∼2.3 
MtCO2. RE could be another mitigation option, with a 
MAC of ∼USD 45 per tonne, especially for DAP and OCF. 
Since RE can abate only ∼0.4 MtCO2, it does not have a 
significant role in decarbonising the fertiliser industry.

As explained in the previous section, green ammonia can 
make the fertiliser industry a net-negative CO2 emitter. 
With a MAC of ∼USD 160 per tonne for DAP and OCF and 
∼USD 270 per tonne for urea, green ammonia can abate 2 
MtCO2 from DAP, 5.1 MtCO2 from OCF, and 30 MtCO2 from 
urea production. The MAC for the use of green ammonia 
in urea production is higher than that for DAP and OCF 
production because the urea industry receives subsidised 
pooled domestic gas priced at USD 7.5 per MMBtu, and 
we have assumed the use of imported natural gas priced 
at USD 10.1 per MMBtu for DAP and OCF production. 

The lower cost of gas for urea plants translates into a 
lower grey ammonia cost and, consequently, a higher 
CO2 mitigation cost. It is important to note that the total 
emissions abated by using green ammonia alone in the 
urea sector is ∼30 MtCO2, which is more than the current 
level of total emissions from the urea sector, which stands 
at ∼16 MtCO2. This is because urea production needs CO2, 
which is sourced from other sectors, making the fertiliser 
industry a net-negative industry.

In the scenario where carbon management measures 
are implemented, the MAC for CCS for DAP and OCF is 
estimated at USD 90 per tonne, which has the potential to 
abate 0.006 and 0.13 MtCO2 for DAP and OCF, respectively. 
Urea plants do not need any CCS as the entire CO2 
abatement can happen with EE, RE, and green ammonia. 
It should be noted that while CCS has a lower abatement 
cost than green ammonia, the MAC curve reflects 
emissions mitigation through the use of green ammonia 
primarily because the cost of green ammonia is expected 
to decrease in the future and support India’s ambitions 
of becoming Aatma Nirbhar. The MAC curve highlights 
the fact that, in the absence of net-zero fuels or direct 
RE-based electrification of process heating applications, 
CCUS is essential for DAP and OCF decarbonisation 
even if green ammonia is used. Amongst the techniques 
considered, carbon offset through afforestation has 
not been numerically estimated due to significant 
uncertainties in its mitigation costs.
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Figure 13 Cumulative MAC for the fertiliser sector

Source: Authors’ analysis

6. Sensitivity analysis
In the base case, we considered pre-pandemic energy 
prices to negate the effect of low-price distortions 
during the pandemic and significantly higher 
prices after it during FY 2022–23. Table 4 shows the 
parameters considered for the sensitivity analysis, 
which essentially reflects the higher prices of natural 
gas in the fertiliser sector. Here, the cost of grey 
ammonia is estimated at ∼USD 500 per tonne for 
DAP and OCF production and ∼USD 400 per tonne 
for urea production. A separate study is needed to 
quantify the impact of a change in the prices of green 

and grey ammonia on the cost of mitigation using EE 
technologies. Therefore, in this study, we assumed that 
the mitigation costs for EE technologies remain the 
same across the base and sensitivity cases.

The MAC curve shown in Figure 14 captures the impact 
of the higher prices of fossil fuels. Compared to the base 
case where the MAC with green ammonia was ∼USD 270 
per t-CO2, using green ammonia for urea production 
at higher gas prices results in an MAC of ∼USD 120 per 
t-CO2. Additionally, due to increased electricity costs, 
the abatement cost for switching to RE decreased. 
Carbon offset, however, remains the most expensive 
technology.
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Table 4 Parameters considered for the sensitivity analysis

Assumptions Value (base case) Value (sensitivity case) Unit

Cost of natural gas (urea) 7.5 11.25 USD/MMBtu

Cost of natural gas (DAP/OCF) 10.11 15 USD/MMBtu

Electricity cost 4.53 5.46 INR/kWh

Cost of grey ammonia (urea) 278 392 USD/t

Cost of grey ammonia (DAP/OCF) 357 511 USD/t

Cost of green ammonia 700 525 USD/t

CCS cost 90 50 USD/t-CO2

Source: Authors’ analysis 

Figure 14 Cumulative MAC for the fertiliser sector with sensitivity analysis

Source: Authors’ analysis
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7. Policy recommendations 
and conclusion
Based on our analysis, achieving net-zero emissions 
in the fertiliser industry will require specific policy 
interventions. The recommendations below outline the 
critical interventions required.

• Incentivise the adoption of the best available 
energy-efficient technologies through the Indian 
Carbon Market

The Indian Carbon Market (ICM) and the Perform, 
Achieve, and Trade (PAT) schemes can play a crucial 
role in encouraging the widespread uptake of EE 
technologies (Bureau of Energy Efficiency n.d.). EE 
measures can potentially mitigate ∼2.3 MtCO2, which 
constitutes 10 per cent of emissions from the fertiliser 
industry. Financial incentives will encourage 
businesses and industries to adopt EE technologies, 
leading to operational efficiency and reduced 
carbon emissions. As we prioritise sustainability, 
incentivising EE technologies becomes a key driver 
for realising positive environmental impacts.

• Incentivise RE uptake in the fertiliser sector

By providing financial and policy support, the 
government can promote the adoption of RE in the 
fertiliser sector. Governments should also support 
decarbonisation by waiving or reducing open access 
charges for renewable power. This approach will 
help reduce the sector’s carbon footprint and will 

contribute to the overall transition to cleaner and 
more environmentally friendly production practices.

• Blend green ammonia in the fertiliser industry

Promoting the use of green ammonia can have 
transformative effects on the fertiliser industry, 
as ∼35 MtCO2 can be abated by switching to green 
ammonia. Despite cost-related challenges being a 
barrier to immediate adoption, a gradual and phased 
approach to adopting green ammonia through 
blending could be a viable solution. By incrementally 
increasing the utilisation of green ammonia blends, 
the industry can strategically transform into a net-
zero fertiliser sector.

• Promote the use of green ammonia for the 
production of green urea ammonium nitrate and 
other nitrates

Urea ammonium nitrate (UAN) is a popular liquid 
fertiliser widely used in North America and Europe. 
It is produced by blending ammonium nitrate with 
urea. Ammonium nitrate produced from green 
ammonia can be blended with urea to produce green 
UAN.

• Co-locate bioethanol and urea plants

CO2 generated as by-product during the production 
of bioethanol can be used to produce urea. New 
bioethanol plants need to be set up to achieve the 
revised target of blending 20 per cent of bioethanol 
in petrol by 2025. It is recommended that these new 
plants be located near urea plants.

Im
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India is the second-largest importer of urea with ~10 MT imported in FY2022-23
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Annexure I Parameter and assumption used in the 
analysis

S.No. Parameter Value Unit Remark

1 Emission factor of electricity 1.064 kg-CO2/kWh 62% is from captive, 33% from the grid, and 
5% from RE (Central Electricity Authority 
2020)

2 Emission factor of natural gas 0.27 t-CO2/GCal (Gómez and Watterson 2006)

Calorific value

3 Natural gas calorific value 52,250 kCal/kg

4 Hydrogen (LHV) 120 MJ/kg

5 Ammonia (LHV) 18.8 MJ/kg

Conversion factor

6 1 USD 75 INR Average for the year 2020

7 1 tonne urea 0.57

0.73

tonne NH3

tonne CO2

Based on stoichiometry

8 1 tonne NH3 0.18

0.82

tonne H2

tonne N2

Based on stoichiometry

9 1 GJ 277.78 kWh

10 1 MMBtu 1.055 GJ

Prices

11 Cost of natural gas (urea) 7.5 USD/MMBtu Industry experts

12 Cost of natural gas (DAP/OCF) 10.11 USD/MMBtu Industry experts

13 Electricity cost 4.53 INR/kWh 62% is from captive, 33% from the grid, and 
5% from RE (Central Electricity Authority 
2020)

14 Cost of grey ammonia (urea) 278 USD/t Based on natural gas price

15 Cost of grey ammonia (DAP/OCF) 357 USD/t Based on natural gas price

16 Cost of green ammonia 700 USD/t Assumed

17 Transport cost of CO2 15 USD/t (Smith, et al. 2021)

18 CO2 capture cost 50 USD/t-CO2  (IEA 2019)

Financial assumptions

19 Interest rate 10 Percentage Assumed

20 No. of years 10 Years Assumed

21 No of payments 120 Assumed
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Acronyms
AS  ammonium sulphate

BVFCL   brahmaputra valley fertilizer 
corporation limited

CAPEX   capital expenditure

CCS   carbon capture and sequestration

CCU   carbon capture and utilisation

CCUS    carbon capture, utilisation, and 
storage

CPP  captive power plant

DAP  di-ammonium phosphate

EE   energy efficiency

ICM  Indian carbon market

LNG  liquified natural gas

MAC   marginal abatement cost

MAP  mono-ammonium phosphate

MMBtu   million British thermal units

MoP  muriate of potash

MtCO₂   million tonnes of CO₂

MTPA   million tonnes per annum

OCF  other complex fertiliser

OPEX   operating expenditure

PSU  public sector undertaking

RE   renewable energy

RTC  round-the-clock

SEC  specific energy consumption

SSP  single super phosphate

TEN  target energy norm
VAR  vapour absorption refrigeration
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